Skip to main content
Log in

Comparison of the Active Species in the RF and Microwave Flowing Discharges of N2 and Ar–20 %N2

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We report a detailed comparison between RF and microwave (HF) plasmas of N2 and Ar–20 %N2 as well as in the corresponding afterglows by comparing densities of active species at nearly the same discharge conditions of tube diameter (5–6 mm), gas pressure (6–8 Torr), flow rate (0.6–1.0 slm) and applied power (50–150 W). The analysis reveals an interesting difference between the two cases; the length of the RF plasma (~25 cm) is measured to be much longer than that of HF (6 cm). This ensures a much longer residence time (10−2 s) of the active species in the N2 RF plasma [compared to that (10−3 s) of HF], providing a condition for an efficient vibrational excitation of N2(X, v) by (V–V) climbing-up processes, making the RF plasma more vibrationally excited than the HF one. As a result of high V–V plasma excitation in RF, the densities of the vibrationally excited N2(X, v > 13) molecules are higher in the RF afterglow than in the HF afterglow. Destruction of N2(X, v) due to the tube wall is estimated to be very similar between the two system as can be inferred from the γv destruction probability of N2(X, v > 3–13) on the tube wall (2–3 × 10−3 for both cases) obtained from a comparison between the density of N2(X, v > 3–9) in the plasmas to that of the N2(X, v > 13) in the long afterglows. Interestingly enough, densities of N-atoms and N2(A) metastable molecules in the afterglow regions, however, are measured to be very similar with each other. The measured lower density of N2 + ions than expected in the HF afterglow is rationalized from a high oxygen impurity in our HF setup since N2 + ions are very sensitive to oxygen impurity .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ricard A, Oh SG, Guerra V (2013) Line-ratio determination of atomic oxygen and N2 metastable absolute densities in an RF nitrogen late afterglow. Plasma Sources Sci Technol 22(3):035009. doi:10.1088/0963-0252/22/3/035009

    Article  Google Scholar 

  2. Zerrouki H, Ricard A, Sarrette JP (2013) Determination of N and O-atom and N2(A) metastable molecule densities in the afterglows of N2 and N2–O2 microwave discharges. Contrib Plasmas Phys 53(8):599–604. doi:10.1002/ctpp.201300008

    Article  CAS  Google Scholar 

  3. Ricard A, Oh SG (2014) Densities of active species in N2 and N2–H2 RF pink afterglow. Plasma Sources Sci Technol 23(4):045009. doi:10.1088/0963-0252/23/4/045009

    Article  Google Scholar 

  4. Zerrouki H, Ricard A, Sarrette JP (2014) Determination of N and O-atoms and N2(A) metastable molecule densities in the afterglows of N2–H2, Ar–N2–H2 and Ar–N2–O2 microwave discharges. Contrib Plasmas Phys 54(10):827–837. doi:10.1002/ctpp.201400001

    Article  CAS  Google Scholar 

  5. Ricard A, Oh SG, Jang J, Kim YK (2015) Quantitative evaluation of the densities of active species of N2 in the afterglow of Ar-embedded N2 RF plasma. Curr Appl Phys 15(11):1453–1462. doi:10.1016/j.cap.2015.08.013

    Article  Google Scholar 

  6. Philip N, Saoudi B, Crevier MC, Moisan M, Barbeau J, Pelletier J (2002) The respective roles of UV photons and oxygen atoms in plasma sterilization at reduced gas pressure: the case of N2–O2 mixtures. IEEE Trans Plasma Sci 30(4):1429–1436. doi:10.1109/TPS.2002.804203

    Article  CAS  Google Scholar 

  7. Villeger S, Sarrette JP, Ricard A (2005) Synergy between N and O atom action and substrate surface temperature in a sterilization process using a flowing N2–O2 microwave post discharge. Plasma Process Polym 2(9):709–714. doi:10.1002/ppap.200500040

    Article  CAS  Google Scholar 

  8. Pointu A-M, Ricard A, Dodet B, Odic E, Larbre J, Ganciu M (2005) Production of active species in N2–O2 flowing post-discharges at atmospheric pressure for sterilization. J Phys D Appl Phys 38(12):1905–1909. doi:10.1088/0022-3727/38/12/009

    Article  CAS  Google Scholar 

  9. Ricard A, Jaoul C, Gaboriau F, Gherardi N, Villeger S (2004) Production of N, H, O, and C atoms in flowing microwave discharges. Surf Coat Technol 188–189:287–293. doi:10.1016/j.surfcoat.2004.08.171

    Article  Google Scholar 

  10. Ricard A, Monna V (2002) Reactive molecular plasmas. Plasma Sources Sci Technol 11(3A):A150. doi:10.1088/0963-0252/11/3A/322

    Article  CAS  Google Scholar 

  11. Molchan IS, Thompson GE, Skeldon P, Trigoulet N, Chapon P, Tempez A, Malherbe J, Lobo Revilla L, Bordel N, Belenguer P, Nelis T, Zahri A, Therese L, Guillot P, Ganciu M, Michler J, Hohl M (2009) The concept of plasma cleaning in glow discharge spectrometry. J Anal At Spectrom 24(6):734–741. doi:10.1039/B818343K

    Article  CAS  Google Scholar 

  12. Kaluri SR, Hess DW (1996) Nitrogen incorporation in thin oxides by constant current N2O plasma anodization of silicon and N2 plasma nitridation of silicon oxides. Appl Phys Lett 69(8):1053–1055. doi:10.1063/1.116928

    Article  CAS  Google Scholar 

  13. Ricard A, Hubert J, Michel H (1992) Correlations between active plasma species and steel surface nitriding in microwave post-discharge reactors. In: Capitelli M, Gorse C (eds) Plasma technology: fundamentals and applications. Springer, Boston, pp 125–142. doi:10.1007/978-1-4615-3400-6_9

    Chapter  Google Scholar 

  14. Ricard A, Czerwiec T, Belmonte T, Bockel S, Michel H (1999) Detection by emission spectroscopy of active species in plasma–surface processes. Thin Solid Films 341(1–2):1–8. doi:10.1016/S0040-6090(98)01529-6

    Article  Google Scholar 

  15. Zhu X-M, Pu Y-K (2010) Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method. J Phys D Appl Phys 43(40):403001. doi:10.1088/0022-3727/43/40/403001

    Article  Google Scholar 

  16. Zerrouki H, Ricard A, Sarrette JP (2014) Determination of N and O-atoms, of N2 (A) and N2 (X, v > 13) metastable molecules and N2+ ion densities in the afterglows of N2–H2, Ar–N2–H2 and Ar–N2–O2 microwave discharges. J Phys Conf Ser 550(1):012045. doi:10.1088/1742-6596/550/1/012045

    Article  Google Scholar 

  17. Kang N, Lee M, Ricard A, S-g Oh (2012) Effect of controlled O2 impurities on N2 afterglows of RF discharges. Curr Appl Phys 12(6):1448–1453. doi:10.1016/j.cap.2012.04.009

    Article  Google Scholar 

  18. Boudam MK, Saoudi B, Moisan M, Ricard A (2007) Characterization of the flowing afterglows of an N2–O2 reduced-pressure discharge: setting the operating conditions to achieve a dominant late afterglow and correlating the NO β UV intensity variation with the N and O atom densities. J Phys D Appl Phys 40(6):1694–1711. doi:10.1088/0022-3727/40/6/019

    Article  CAS  Google Scholar 

  19. Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG (2007) Determination of the vibrational, rotational and electron temperatures in N2 and Ar–N2 RF discharge. J Phys D Appl Phys 40(4):1022. doi:10.1088/0022-3727/40/4/016

    Article  CAS  Google Scholar 

  20. Nassar H, Pellerin S, Musiol K, Martinie O, Pellerin N, Cormier JM (2004) N2 +/N2 ratio and temperature measurements based on the first negative N2 + and second positive N2 overlapped molecular emission spectra. J Phys D Appl Phys 37(14):1904–1916. doi:10.1088/0022-3727/37/14/005

    Article  CAS  Google Scholar 

  21. Sadeghi N, Foissac C, Supiot P (2001) Kinetics of N2 (A 3Σ +u ) molecules and ionization mechanisms in the afterglow of a flowing N2 microwave discharge. J Phys D Appl Phys 34(12):1779. doi:10.1088/0022-3727/34/12/304

    Article  CAS  Google Scholar 

  22. Chaker M, Moisan M, Zakrzewski Z (1986) Microwave and RF surface wave sustained discharges as plasma sources for plasma chemistry and plasma processing. Plasma Chem Plasma Process 6:79–96

    Article  CAS  Google Scholar 

  23. Massabieaux B, Plain A, Ricard A, Capitelli M, Gorse C (1983) Excitation of vibrational and electronic states in a glow discharge column in flowing N2. J Phys B At Mol Phys 16(10):1863. doi:10.1088/0022-3700/16/10/021

    Article  CAS  Google Scholar 

  24. Gordiets B, Hamedov SS, Shelepin IA (1975) Vibrational kinetics of harmonic oscillators under essentially nonequilibrium conditions. Sov Phys JETP 40:640

    Google Scholar 

  25. Gilmore FR, Laher RR, Espy PJ (1992) Franck–Condon factors, r-centroids, electronic transition moments, and Einstein coefficients for many nitrogen and oxygen band systems. J Phys Chem Ref Data 21(5):1005–1107. doi:10.1063/1.555910

    Article  CAS  Google Scholar 

  26. Pancheshnyi SV, Starikovskaia SM, Starikovskii AY (2000) Collisional deactivation of N2(C 3Πu, v = 0, 1, 2, 3) states by N2, O2, H2 and H2O molecules. Chem Phys 262(2–3):349–357. doi:10.1016/S0301-0104(00)00338-4

    Article  CAS  Google Scholar 

  27. De Benedictis S, Dilecce G (1995) Vibrational relaxation of N2(C, v) state in N2 pulsed RF discharge: electron impact and pooling reactions. Chem Phys 192(2):149–162. doi:10.1016/0301-0104(94)00370-P

    Article  Google Scholar 

  28. Mavadat M, Ricard A, Sarra-Bournet C, Laroche G (2011) Determination of ro-vibrational excitations of N2 (B, v′) and N2 (C, v′) states in N2 microwave discharges using visible and IR spectroscopy. J Phys D Appl Phys 44(15):155207. doi:10.1088/0022-3727/44/15/155207

    Article  Google Scholar 

  29. Blanchard H, Sarrette JP, Villeger S, Baudel P, Ricard A (2004) Density of oxygen atoms in high pressure (10–50 torr) flowing microwave post-discharges for elastomer treatments. Eur Phys J Appl Phys 26(03):221–226. doi:10.1051/epjap:2004036

    Article  CAS  Google Scholar 

  30. Capitelli M, Gorse C, Ricard A (1982) Non equilibrium dissociation and ionization of N2 in decaying plasmas. J Phys (Paris) 43:L417–L423

    Article  Google Scholar 

  31. Villeger S, Sarrette JP, Rouffet B, Cousty S, Ricard A (2008) Treatment of flat and hollow substrates by a pure nitrogen flowing post discharge. Eur Phys J Appl Phys 42(01):25–32. doi:10.1051/epjap:2007177

    Article  CAS  Google Scholar 

  32. Marinov D, Lopatik D, Guaitella O, Hubner M, Ionikh Y, Ropcke J, Rousseau A (2012) Surface vibrational relaxation of N2 studied by CO2 titration with time-resolved quantum cascade laser absorption spectroscopy. J Phys D Appl Phys 45(175201):33

    Google Scholar 

  33. Guerra V, Loureiro J (1997) Self-consistent electron and heavy particle kinetics in a low-pressure N2–O2 glow discharge. Plasmas Sources Sci Technol 6:373–385

    Article  CAS  Google Scholar 

  34. Armenise I, Capitelli M, Garcia E, Gorse C, Lagana A, Longo S (1992) Deactivation dynamics of vibrationally excited nitrogen molecules by nitrogen atoms. Chem Phys Lett 200:597–604

    Article  CAS  Google Scholar 

  35. Capitelli M, Gorse C, Ricard A (1986) Coupling of vibrational and electronic energy distributions in discharge and post-discharge conditions. In: Topics in current chemistry, vol 39. Non equilibrium vibrational kinetics. Chapter 11, pp 315–337

Download references

Acknowledgments

Y.K.K. acknowledges a financial support from the International Research and Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2015K1A3A1A21000248). This work was supported by the Franco-Korean project PHC STAR 2015 (34306TK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ricard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricard, A., Sarrette, JP., Oh, SG. et al. Comparison of the Active Species in the RF and Microwave Flowing Discharges of N2 and Ar–20 %N2 . Plasma Chem Plasma Process 36, 1559–1570 (2016). https://doi.org/10.1007/s11090-016-9739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9739-9

Keywords

Navigation