Skip to main content

Advertisement

Log in

Thermal Plasma Sources: How Well are They Adopted to Process Needs?

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thermal plasma devices have evolved over the years from an aerospace R&D tool for the simulation of re-entry of space vehicles into powerful sources for a wide range of applications including materials processing, nano-powder synthesis and deposition of functional coatings, waste treatment and biomass gasification. With the development of full scale industrial applications, it is increasingly apparent that the plasma source is an integral part of the process, and that the success of a technology depends to a large extent on the way the plasma source satisfies the process needs. In this paper, a short review is presented of a selected number of commercially available plasma sources that are using DC and/or RF inductively coupled plasma torch technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bisson JF, Gauthier B, Moreau C (2003) Effect of plasma fluctuations on in-flight particle parameters. J Therm Spray Technol 12:38

    Article  CAS  Google Scholar 

  2. Mogensen P, Thornblom J (1987) Chapter 6—electrical and mechanical technology of plasma generation and control. In: Feinman J (ed) Plasma technology in metallurgical processing. Iron and Steel Society, Inc

  3. Fauchais P, Heberlein JVR, Boulos MI (2014) Thermal spray fundamentals—from powder to part. Springer, Berlin, p 439

    Book  Google Scholar 

  4. Schein J, Zierhut J, Dzulko M, Forster G, Landes KD (2007) Improved plasma spray torch stability through multi-electrode design. Contrib Plasma Phys 47:498. doi:10.1002/ctpp.200710064

    Article  Google Scholar 

  5. http://www.gtv-mbh.com/_old/gtv-mbh-englisch/www.gtv-mbh.de/cms/upload/downloads/flyer/Delta_e.pdf

  6. http://www.mettech.com/coating-equipment/axial-III-plasma-spray-system.php

  7. Pershin L, Chen L, Mostaghimi J (2008) Plasma spraying of metal coatings using CO2-based gas mixtures. In: Proceedings of the international thermal spray conference, Netherlands

  8. Chen L, Pershin L, Mostaghimi J (2008) A new highly efficient high-power DC plasma torch. IEEE Trans Plasma Sci 36:1068

    Article  CAS  Google Scholar 

  9. Lee H-P, Pfender E, Chen X (2003) Application of Steenbeck’s minimum energy principle for three-dimensional modeling of DC arc plasma torches. J Phys D Appl Phys 36:1084

    Article  Google Scholar 

  10. Trelles JP, Pfender E, Heberlein JVR (2007) Modelling of the arc reattachment process in plasma torches. J Phys D Appl Phys 40:5635

    Article  CAS  Google Scholar 

  11. Trelles JP, Chazelas C, Vardelle A, Heberlein JVR (2009) Arc plasma torch modeling. J Therm Spray Technol 18:728

    Article  Google Scholar 

  12. Huang R, Fukanuma H, Uesugi Y, Tanaka Y (2012) Simulation of arc root fluctuation in a DC non-transferred plasma torch with three dimensional modeling. J Therm Spray Technol 21:636

    Article  Google Scholar 

  13. Safaei Ardakani E, Mostaghimi J (2013) Arc length estimation in non-transferred direct current argon plasma torch using CFD modeling and experiment. In: Proceedings of the 21st international symposium on plasma chemistry, Cairns, Australia

  14. Farrokpanah A, Samareh B, Mostaghimi J (2014) Applying contact angle to a 2D multiphase smooth particle hydrodynamics model. ASME J Fluids Eng. doi:10.1115/1.4028877

    Google Scholar 

  15. DalPino EMD, Cerqueira AH (1996) 3-D SPH simulations of HD and MHD jets. Astrophys Lett Commun 34:303

    Google Scholar 

  16. Fabry F, Rehmet C, Rohani V, Fulcher L (2013) Waste gasification by thermal plasma: a review. Waste Biomass Valor 4:421

    Article  CAS  Google Scholar 

  17. Hrabovsky M, Kopecky V, Sember V, Kavka T, Chumak O, Konrad M (2006) Properties of hybrid water/gas DC arc plasma torch. IEEE Trans Plasma Sci 34:1566

    Article  Google Scholar 

  18. Mitrasinovic A, Pershin L, Wen J, Mostaghimi J (2011) Recovery of Cu and valuable metals from e-waste using thermal plasma treatment. J Miner Met Mater 63:24

    Article  CAS  Google Scholar 

  19. Pershin L, Mitrasinovic A, Mostaghimi J (2013) Treatment of refractory powders by a novel, high enthalpy dc plasma. J Phys D Appl Phys 46, Article no. 224019

  20. Camacho SL (1988) Industrial-worthy plasma torches: state-of-the-art. Pure Appl Chem 60:619

    Article  CAS  Google Scholar 

  21. http://www.westinghouse-plasma.com/wpc_plasma_torches/

  22. Zhukov MF, Zaspkin IM (eds) (2007) Thermal plasma torches design, characteristics, applications. CISP, UK

    Google Scholar 

  23. http://www.phoenixsolutionsco.com/psctorches.html

  24. http://www.scanarc.se/pages.asp?PageID=4105

  25. Szente RN, Munz RJ, Drouet MG (1987) Effect of the arc velocity on the cathode erosion rate in argon-nitrogen mixtures. J Phys D Appl Phys 20:754

    Article  CAS  Google Scholar 

  26. Szente RN, Munz RJ, Drouet MG (1988) Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen. J Phys D Appl Phys 21:909

    Article  CAS  Google Scholar 

  27. Babat GI (1947) Electrodeless discharges and some allied problems. J Inst Electr Eng 94:27–37

    Google Scholar 

  28. Reed TB (1961) Induction coupled plasma torch. J Appl Phys 32:821–824

    Article  CAS  Google Scholar 

  29. Reed TB (1961) Growth of refractory crystals using the induction plasma torch. J Appl Phys 32:2534–2536

    Article  Google Scholar 

  30. Boumans PWJM (ed) (1987) Inductively coupled plasma emission spectroscopy, chemical analysis series, vol 90. Wiley, New York

    Google Scholar 

  31. Drouart A et al (1996) Method of building up an optical fiber preform by plasma deposition, and optical fiber obtained from preform built up by the method, US Patent 5,522,007

  32. Boulos MI (1997) The inductively coupled radio frequency plasma. High Temp Mater Process 1:17–39

    Article  CAS  Google Scholar 

  33. Boulos MI (2012) New frontiers in thermal plasmas from space to nanomateials. J Nucl Eng Technol 44:1–7

    Article  CAS  Google Scholar 

  34. Boulos M (2004) Plasma power can make better powders. Metal Powder Rep (5):16–21

  35. Proulx P, Mostaghimi J, Boulos MI (1985) Plasma–particle interaction effects in induction plasma modelling under dense loading conditions. Int J Heat Mass Transf 28:1327–1336

    Article  CAS  Google Scholar 

  36. Colombo V, Ghedini E, Sanibondi P (2010) A three-dimensional investigation of the effects of excitation frequency and sheath gas mixing in an atmospheric-pressure inductively coupled plasma system. J Phys D Appl Phys 43(105202):1–14

    Google Scholar 

  37. Colombo V, Ghedini E, Sanibondi P (2010) Three-dimensional investigation of particle treatment in a RF thermal plasma with reaction chamber. Plasma Sources Sci Technol 19(065024):1–13

    Google Scholar 

Download references

Acknowledgments

J. Mostaghimi would like to acknowledge the financial support of NSERC. As well, Dr. S. Yugeswaran preparation of a number of figures for the DC plasma section is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Mostaghimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostaghimi, J., Boulos, M.I. Thermal Plasma Sources: How Well are They Adopted to Process Needs?. Plasma Chem Plasma Process 35, 421–436 (2015). https://doi.org/10.1007/s11090-015-9616-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9616-y

Keywords

Navigation