Skip to main content
Log in

Structure of Plasma Poly(Acrylic Acid): Influence of Pressure and Dielectric Properties

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thin poly(acrylic acid) PAA films were deposited by pulsed plasma polymerization on different organic and inorganic substrates. The structure–property relationships of the deposited acrylic acid polymers were studied in dependence on the monomer pressure by various techniques and probes. The surface and bulk properties of the plasma deposited films were investigated by X-ray photoelectron spectroscopy, attenuated total reflection infrared, and broad band dielectric spectroscopy. The experimental infrared frequencies of PAA films are compared with those predicted from quantum mechanical calculation. The concentration of the COOH groups in the film (stored in ambient air) decreased by about 15 % compared to the as-prepared sample. The plasma deposited PAA probably form a highly branched product. However, the dielectric measurements show that in addition to the hydrogen bonds, self condensation process was able to hinder the localized fluctuation as well. These processes lead to form a cross-linked network polymer film. Nevertheless, a low energy is sufficient to break these processes during heating at atmospheric pressure. Therefore, homogenized samples with free branches (functional group) were obtained after a first heating with structures close to conventional polymerized acrylic acid. Thus, a thermally stable product was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Voronin SA, Zelzer M, Fotea C, Alexander MR, Bradley JW (2007) J Phys Chem B 111:3419

    Article  CAS  Google Scholar 

  2. Rinsch CL, Chen X, Panchalingam V, Eberhart RC, Wang J-H, Timmons RB (1996) Langmuir 12:2995

    Article  CAS  Google Scholar 

  3. Friedrich J, Mix R, Kuhn G, Retzko I, Schonhals A, Unger W (2003) Compos Interfaces 10:173

    Article  CAS  Google Scholar 

  4. Fahmy A, Mix R, Schönhals A, Friedrich J (2013) Plasma Process Polym 10:750

    Article  CAS  Google Scholar 

  5. Ward AJ, Short RD (1993) Polymer 34:4179

    Article  CAS  Google Scholar 

  6. Beck AJ, Jones FR, Short RD (1996) Polymer 37:5537

    Article  CAS  Google Scholar 

  7. Barton D, Shard AD, Short RD, Bradley JW (2005) J Phys Chem B 109:3207

    Article  CAS  Google Scholar 

  8. Siow K, Britcher L, Kumar S, Griesser H (2006) Plasma Process Polym 3:392

    Article  CAS  Google Scholar 

  9. Fahmy A, Mix R, Schönhals A, Friedrich (2011) Plasma Process Polym 8:147

    CAS  Google Scholar 

  10. Fahmy A, Mix R, Schönhals A, Friedrich J (2012) Plasma Process Polym 9:273

    Article  CAS  Google Scholar 

  11. Haddow DB, Steele DA, Short RD, Dawson RA, MacNeil SJ (2003) J Biomed Mater Res Part A 64:80

    Article  CAS  Google Scholar 

  12. Parry K, Shard A, Short RD, White R, Whittle J, Wright A (2006) Surf Interface Anal 38:1497

    Article  CAS  Google Scholar 

  13. Favia P, Palumbo F, d’Agostino R, Lamponi S, Magnani A, Barbucci R (1998) Plasmas Polym 3:77

    Article  CAS  Google Scholar 

  14. Kettle AP, Beck AJ, O’Toole L, Jones FR, Short RD (1997) Compos Sci Technol 57:1023

    Article  CAS  Google Scholar 

  15. Detomaso L, Gristina R, Senesi GS, d’Agostino R, Favia P (2005) Biomaterials 26:3831

    Article  CAS  Google Scholar 

  16. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  17. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  18. Ezquerra TA, Roslaniec Z, Lopez-Cabarcos E, Balta-Calleja FJ (1995) Macromolecules 28:4516

    Article  CAS  Google Scholar 

  19. Schönhals A, Schlosser E, Pohl G, Goering H, Joel D, Carius HE (1994) ACS PMSE Prep 70:316

    Google Scholar 

  20. Schönhals A, Fritz A, Pfeiffer K (2001) Macromol Chem Phys 202:3228

    Article  Google Scholar 

  21. Fahmy A, Schönhals A, Friedrich J (2013) J Phys Chem B 117:10603

    Article  CAS  Google Scholar 

  22. Chilcoti A, Ratner BD (1993) In: Sabbatini L, Zambonin PG (eds) Surface characterization of advanced polymers. VCH, Chapter 6:221

  23. Kremer F, Schönhals A (2002) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  24. Alexander MR, Wright PV, Ratner BD (1996) Surf Interface Anal 24:217

    Article  CAS  Google Scholar 

  25. Swaraj S, Oran U, Lippitz A, Friedrich JF, Unger WES (2007) Plasma Process Polym 4:S784

    Article  Google Scholar 

  26. Elias H-G (1990) Macromolecules. Hüthig & Wepf, Basel

    Google Scholar 

  27. Friedrich JF, Mix R, Schulze RD, Meyer-Plath A, Joshi R, Wettmarshausen S (2008) Plasma Process Polym 5:407

    Article  CAS  Google Scholar 

  28. Pulay P (1969) Mol Phys 17:197

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh

  30. Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004) J Phys Chem A 108:9213

    Article  CAS  Google Scholar 

  31. Yamaguchi Y, Frisch M, Gaw J, Schaefer HF III, Binkley JS (1986) J Chem Phys 84:2262

    Article  CAS  Google Scholar 

  32. Stephens PJ, Delvin FJ, Chavalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  33. Krimm S, Liang CY, Sutherland GBBM (1956) J Chem Phys 25:549

    Article  CAS  Google Scholar 

  34. Mohan AR, Probakaran (1989) Asian J. Chem. 1:162

    CAS  Google Scholar 

  35. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  36. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  37. Tammann G, Hesse GZ (1926) Anorg Allg Chem 156:245

    Article  Google Scholar 

  38. Cauich-Rodriguez JV, Deb S, Smith R (1996) Biomaterials 17:2259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Alaa Fahmy gratefully acknowledges the grant of the current research project from ministry of scientific research-Egypt (postdoctoral). Authors thank Mr. Sherif Madkour (6.9 Nano-Tribologie and Nanostructure of the surfaces (BAM, Berlin)) for helping to improve the language of the article. Thanks are also given to Ms. G. Hidde, and Mr. F. Milczewski for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Fahmy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahmy, A., Mohamed, T.A. & Schönhals, A. Structure of Plasma Poly(Acrylic Acid): Influence of Pressure and Dielectric Properties. Plasma Chem Plasma Process 35, 303–320 (2015). https://doi.org/10.1007/s11090-014-9603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9603-8

Keywords

Navigation