Skip to main content
Log in

Perspectives on Research on High Voltage Gas Circuit Breakers

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The research on high voltage circuit breakers using SF6 is addressed. The current state of the art in this field is shortly reviewed and future research directions are discussed. These are mainly the radiative energy transport, the understanding and description of ablation processes at the nozzle and contact surfaces, the influence of such vapors on pressure build up and interruption capability, electric breakdown processes, departures from equilibrium, turbulence and the importance of magnetic fields and 3D modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ryan HM, Jones GR (1989) SF6 switchgear. Peter Pelegrinus, London

    Google Scholar 

  2. IEC 62271-100, High-voltage switchgear and controlgear—Part 100: alternating-current circuit-breakers, Ed. 2.0 2008-04

  3. Ostrowski J et al (2014) Computational magnetohydrodynamics in the simulation of gas circuit breakers. Int J Comput Sci Eng 9(5/6):433–444

    Article  Google Scholar 

  4. Nakanishi K (1991) Switching phenomena in high voltage CB. Marcel Dekker, New York

    Google Scholar 

  5. Franck CM et al (2006) Application of high current and current zero simulations of high-voltage circuit breakers. Contrib Plasma Phys 46(10):787–797

    Article  Google Scholar 

  6. Smeets RPP et al (2002) Performance evaluation of high-voltage circuit breakers by means of current zero analysis. In: Transmission and distribution conference and exhibition 2002: Asia Pacific. IEEE/PES, vol 1, pp 424–429

  7. Seeger M et al (2012) Dielectric recovery in a high-voltage circuit breaker in SF6. J Phys D Appl Phys 45(39):395204

    Article  Google Scholar 

  8. Yousfi M et al (2005) Breakdown electric field calculations of hot SF6 for high voltage circuit breaker applications. IEEE Trans Dielectr Electr Insul 12(6):1192–1199

    Article  CAS  Google Scholar 

  9. Uchii T et al (2004) Effects of hot SF6 on post-arc circuit breaker design. IEEE Trans Power Deliv 19:124–130

    Article  CAS  Google Scholar 

  10. Dommerque et al (2005) Influence of the electrode vapour contamination on the interrupting limit of SF6 self-blast-circuit breakers, Part I: experimental investigations. In: XVIth symposium on physics of switching arc, Brno, Czech Republic

  11. Ruchti CB et al (1986) Ablation controlled arcs. IEEE Trans Plasma Sci 14:423–434

    Article  Google Scholar 

  12. Christen T (2011) Radiation and Nozzle–Ablation models for CFD simulations of gas circuit breakers. In: Proceedings of the 1st international conference electric power equipment—switching technology, Xi’an, China, pp 471–474

  13. Tepper J et al (2006) Investigation on Erosion of Cu/W contacts in high-voltage circuit breakers. IEEE Trans Compon Pack Technol 29(3):658–665

    Article  CAS  Google Scholar 

  14. Seeger M et al (2005) Experimental study on PTFE ablation in high voltage circuit-breakers. J Phys D Appl Phys 39:5016–5024

    Article  Google Scholar 

  15. Bini R et al (2011) Arc induced turbulent mixing in an SF6 circuit breaker model. J Phys D Appl Phys 44:25203–25212

    Article  Google Scholar 

  16. IEC/TR 62271-310, High-voltage switchgear and controlgear—Part 310: electrical endurance testing for circuit-breakers above a rated voltage of 52 kV, Ed 2.0 2008-03

  17. Nordborg H et al (2008) Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations. J Phys D Appl Phys 41:135205

    Article  Google Scholar 

  18. Iordanidis A et al (2008) Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers. J Phys D Appl Phys 41:135206

    Article  Google Scholar 

  19. Reichert F et al (2012) Modelling and simulation of radiative energy transfer in high-voltage circuit breakers. J Phys D Appl Phys 45(37):375201

    Article  Google Scholar 

  20. Jan C, Cressault Y et al (2014) Calculation of radiative properties of SF6–C2F4 thermal plasmas—application to radiative transfer in high-voltage circuit breakers modelling. J Phys D Appl Phys 47:015204

    Article  Google Scholar 

  21. Christen T et al (2011) Radiative heat transfer and effective transport coefficients. In: Belmiloudi A (eds) Heat transfer. InTech, pp 101–126 (free online on intechweb.org)

  22. Zhang JL et al (2002) Computational investigation of arc behavior in an auto-expansion circuit breaker contaminated by ablated nozzle vapour. IEEE Trans Plasma Sci 30:706–719

    Article  CAS  Google Scholar 

  23. Gonzalez JJ et al (2011) Turbulence and magnetic field calculations in high-voltage circuit breakers. IEEE Trans Plasma Sci 99:1–10

    Google Scholar 

  24. Yan JD et al (1999) A comparative study of turbulence models for SF6 arcs in a supersonic nozzle. J Phys D Appl Phys 32:1401–1406

    Article  CAS  Google Scholar 

  25. Yan JD et al (2013) The influence of product design parameters on the performance of high voltage circuit breakers. In: XIIX symposium physics of switching arc, Brno Czech Republic, pp 58–66

  26. Li Xingwen et al (2013) Study of the dielectric breakdown properties of hot SF6–CF4 mixtures at 0.01–1.6MPa. J Appl Phys 114:053302

    Article  Google Scholar 

  27. Seeger M et al (2007) Investigation on the temperature dependence of the critical electric field in SF6/C2F4 mixtures. In: XVIIth symposium on physics of switching arc, Brno, Czech Republic

  28. Tanaka Y (2005) Influence of copper vapor contamination on dielectric properties of hot air at 300–3500 K in atmospheric pressure. IEEE Trans Dielectr Electr Insul 12(3):504

    Article  CAS  Google Scholar 

  29. Stoller P et al (2013) CO2 as an arc interruption medium in gas circuit breakers. IEEE Trans Plasma Sci 41(8):2359

    Article  CAS  Google Scholar 

  30. Franck CM et al (2014) An efficient procedure to identify and quantify new molecules for insulating gas mixtures. Cent Plasma Phys (CPP) 54(1):3–13

    Article  CAS  Google Scholar 

  31. Wang W et al (2013) Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model. J Phys D Appl Phys 46:065203

    Article  Google Scholar 

  32. St Franke et al (2014) Temperature determination in copper-dominated free-burning arcs. J Phys D Appl Phys 47:015202

    Article  Google Scholar 

  33. Nielsen T et al (2001) Modelling evaporating metal droplets in ablation controlled electric arcs. J Phys D Appl Phys 34:2022–2031

    Article  CAS  Google Scholar 

  34. Tanaka Y (2013) Development of a chemically nonequilibrium model on decaying SF arc plasmas. IEEE Trans Power Deliv 28(4):2623

    Article  CAS  Google Scholar 

  35. Rutgers WR (1984) Ion density and dielectric breakdown in the afterglow of a high-current arc discharge. Kema Sci Technol Rep 2(9):79–90

    Google Scholar 

  36. Hoffacker M et al (2011) A new method to measure the spatial arc resistance distribution of an axial blown switching arc. In: 17th international symposium on high voltage engineering, Hannover, Germany

  37. Dousset V et al (2012) Simulations and measurements of decaying arcs in high voltage circuit breakers. In: XIX international conference on gas discharges and their applications, Beijing, PRC, pp 178–181

  38. Panousis E et al (2014) Active optical diagnostics of a ‘current-zero-like’ arc in air in a model gas circuit breaker geometry. In: Proceedings of the 20th international conference on gas discharges and their applications, Orleans, France

  39. Seeger M et al (2006) An integral arc model for ablation controlled arcs based on CFD simulations. J Phys D Appl Phys 39:2180–2191

    Article  CAS  Google Scholar 

  40. https://unfccc.int/ghg_data/items/3825.php

  41. Kopainsky J et al (1979) Rotating high current arc. Appl Phys 20:147–153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank M. Bujotzek, T. Christen, C. Doiron, A. Iordanidis, M. Schwinne and V. Teppati from ABB Switzerland Ltd, Corporate Research, for valuable discussions and inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Seeger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seeger, M. Perspectives on Research on High Voltage Gas Circuit Breakers. Plasma Chem Plasma Process 35, 527–541 (2015). https://doi.org/10.1007/s11090-014-9595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9595-4

Keywords

Navigation