Skip to main content
Log in

Perspectives on Thermal Plasma Modelling

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

As in many other fields of research, modelling is an important tool to study thermal plasmas, to interpret their behaviours in different applications and to try to predict some of their global properties. Even though each kind of application tends itself to privilege a specific model, the approach adopted in this paper is to present perspectives of the modelling relative to scientific problems and not to specific applications. Of course for each kind of scientific problem we give some links to the corresponding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murphy AB (2011) J Phys D: Appl Phys 44:194009

    Article  Google Scholar 

  2. Gleizes A, Gonzalez JJ, Freton P (2005) J Phys D: Appl Phys 38:R153

    Article  CAS  Google Scholar 

  3. Trelles JP, Chazelas C, Vardelle A, Heberlein JVR (2009) J. Thermal Spray Technology 18(5/6):728–752

    Article  Google Scholar 

  4. Moisan M, Sauve G, Zakrzewski Z, Hubert J (1994) Plasma Sources Sci Technol 3:584

    Article  Google Scholar 

  5. A.M. Cassie, Cigre, Report 102 (1939)

  6. Mayr O (1943) Archiv für Elektrotechnik 37(12):588–608

    Article  Google Scholar 

  7. Gleizes A, Robert T, Gonzalez JJ, Pons A (1993) J Phys D: Appl Phys 26:1439–1444

  8. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2013) Plasma Chem Plasma Proc 33:779–796

    Article  CAS  Google Scholar 

  9. Murphy AB (1993) Phys Rev E 48:3594

  10. Lowke JJ (1974) JQSRT 14:111

    Article  CAS  Google Scholar 

  11. Nordborg H, Iordanidis AA (2008) J Phys D: Appl Phys 41:135205

    Article  Google Scholar 

  12. Jan C, Cressault Y, Gleizes A, Bousoltane K (2014) J Phys D: Appl Phys 47:015204

    Article  Google Scholar 

  13. G. Colonna, D. Giordano, M. Capitelli, A. Laricchiuta, K. Kästner, M. B. van Gijzen (2013) 31st ICPIG Conference, Topic N°2, Granada, Spain

  14. Colombo V, Concetti A, Ghedini E, Dallavalle S, Vancini M (2008) IEEE Trans Plasma Sci 36(2):389

    Article  Google Scholar 

  15. Zhou Q, Li H, Xu X, Liu F, Guo S, Chang X, Guo W, Xu P (2009) J Phys D: Appl Phys 42:015210

    Article  Google Scholar 

  16. Hlína J, Šonský J, Phys J (2010) J Phys D: Appl Phys 43:055202

    Article  Google Scholar 

  17. Rat V, Coudert JF (2010) Appl Phys Lett 96:101503

    Article  Google Scholar 

  18. M. Seeger (2014) Plasma Chem Plasma Proc, (in press)

  19. M. Benilov “Free on-line tool for simulation of different modes of axially symmetric current transfer to thermionic cathodes” http://www.arc-cathode.uma.pt/tool/index.htm

  20. H. Mulazimoglu, L. Haylock “Recent developments in techniques to minimize lightning current arcing between fasteners and composite structure” Proceedings Int. Conf. Lightning and Static Electricity (ICOLSE) Oxford (Sept. 2011)

  21. El Bayda H, Valensi F, Masquère M, Gleizes A (2013) IEEE,Trans Dielectr Electr Insul 20:19–27

    Article  Google Scholar 

  22. R.P.P Smeets, P.P. Leufkens, J.A.A.N. Hooijmans, N. Uzelac, P. Milovac, D. Kennedy, G. Pietsch, K. Anantavanich “On the replacement of SF6 in internal arc testing of MV SF6 insulated switchgear” 20th Conf. CIRED, Prague (8-11 June 2009), paper 0392 (available from R.P.P. Smeets)

  23. Moreau E, Chazelas C, Mariaux G, Vardelle A (2006) J Therm Spray Technol 15(4):524–530

    Article  Google Scholar 

  24. Trelles JP, Pfender E, Heberlein JVR (2007) J Phys D: Appl Phys 40:5635–5648

    Article  CAS  Google Scholar 

  25. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2014) Plasma Chem Plasma Proc 34:975–996

    Article  CAS  Google Scholar 

  26. Mostaghimi J, Pasandideh-Fard M, Chandra S (2002) Plasma Chem Plasma Proc 22(1):59–84

    Article  CAS  Google Scholar 

  27. Gourari DE, Razafinimanana M, Monthioux M, Arenal R, Valensi F, Joulié S, Serin V (2014) Synthesis of (B-C-N) nanomaterials by arc discharge. 20th Conf. Gas Disch. Appl., GD2014, Orléans (July 2014) sciencesconf.org:gd2014:28600

  28. Safa S, Hekmat-Ardakan A, Soucy G (2014) Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution. In: 13th Int. Conf. High Tech Plasma Proc. HTPP2014, Toulouse (France), June 2014

  29. Annaloro J, Teulet P, Bultel A, Cressault Y, Gleizes A (2014) Calculation of composition and thermodynamic properties in thermal non-equilibrium conditions. In: 13th Int. Conf. High Tech Plasma Proc. HTPP 2014, Toulouse, June 2014

  30. Mazzonia CM, Lentinia D, D’Ammando G, Votta R (2013) Aerosp Sci Technol 28(1):191–197

    Article  Google Scholar 

  31. P. Swaminathan, P. Riviere, A. Soufiani “Modelling radiative properties of participating species in a microwave plasma reactor for diamond deposition” 13rd Int. Conf. High Tech Plasma Proc. HTPP2014, Toulouse (France), June 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Gleizes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleizes, A. Perspectives on Thermal Plasma Modelling. Plasma Chem Plasma Process 35, 455–469 (2015). https://doi.org/10.1007/s11090-014-9589-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-014-9589-2

Keywords

Navigation