Skip to main content
Log in

Characterization of Plasma Polymerized Hexamethyldisiloxane Films Prepared by Arc Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Herein, we present a simple method for fabricating plasma polymerized hexamethyldisiloxane films (pp-HMDSO) possessing superhydrophobic characteristics via arc discharge. The pp-HMDSO films were deposited on a soda–lime–silica float glass using HMDSO monomer vapor as a precursor. A detailed surface characterization was performed using scanning electron microscopy and atomic force microscopy. The growth process of the pp-HMDSO films was investigated as a function of deposition time from 30 to 300 s. The non-wetting characteristics of the pp-HMDSO films were evaluated by means of contact angle (CA) measurements and correlated with the morphological characteristics, as obtained from microscopy measurements. The deposited films were found to be nano-structured and exhibited dual-scale roughness with the static CA values close to 170°. Fourier transform infrared spectroscopy analysis was carried out to investigate chemical and functional properties of these films. Methyl groups were identified spectroscopically to be present within the pp-HMDSO films and were proposed to result in the low surface energy of material. The synergy between the dual-scale roughness and low surface energy resulted in the superhydrophobic characteristics of the pp-HMDSO films. A possible mechanism for the pp-HMDSO film formation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lazauskas A, Grigaliunas V, Guobienė A, Puišo J, Prosyčevas I, Baltrusaitis J (2013) Polyvinylpyrrolidone surface modification with SiOx containing amorphous hydrogenated carbon (a-C:H/SiOx) and nitrogen-doped a-C:H/SiOx films using Hall-type closed drift ion beam source. Thin Solid Films 538:25–31

    Article  CAS  Google Scholar 

  2. Lazauskas A, Grigaliūnas V, Meškinis Š, Kopustinskas V, Guobienė A, Gudonytė A, Andrulevičius M, Tamulevičius T (2009) Hydrophobic diamond like carbon film for surface micromachining. Mater Sci Medzg 15:196–200

    Google Scholar 

  3. Benıtez F, Martınez E, Esteve J (2000) Improvement of hardness in plasma polymerized hexamethyldisiloxane coatings by silica-like surface modification. Thin Solid Films 377:109–114

    Article  Google Scholar 

  4. Miyachi H, Hiratsuka A, Ikebukuro K, Yano K, Muguruma H, Karube I (2000) Application of polymer embedded proteins to fabrication of DNA array. Biotechnol Bioeng 69:323–329

    Article  CAS  Google Scholar 

  5. Puleo DA, Kissling RA, Sheu MS (2002) A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy. Biomat 23:2079–2087

    Article  CAS  Google Scholar 

  6. Kim SJ, Song E, Jo K, Yun T, Moon M-W, Lee K-R (2013) Composite oxygen-barrier coating on a polypropylene food container. Thin Solid Films 540:112–117

    Article  CAS  Google Scholar 

  7. Radeva E (1997) Thin plasma-polymerized layers of hexamethyldisiloxane for acoustoelectronic humidity sensors. Sens Actuators B 44:275–278

    Article  CAS  Google Scholar 

  8. Guermat N, Bellel A, Sahli S, Segui Y, Raynaud P (2009) Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development. Thin Solid Films 517:4455–4460

    Article  CAS  Google Scholar 

  9. Aumaille K, Vallée C, Granier A, Goullet A, Gaboriau F, Turban G (2000) A comparative study of oxygen/organosilicon plasmas and thin SiOxCyHz films deposited in a helicon reactor. Thin Solid Films 359:188–196

    Article  CAS  Google Scholar 

  10. Delfino M, Tsai W, Reynolds G, Day M (1993) Hydrogenating silicon dioxide in an electron cyclotron plasma. Appl Phys Lett 63:3426–3428

    Article  CAS  Google Scholar 

  11. Grimoldi E, Zanini S, Siliprandi R, Riccardi C (2009) AFM and contact angle investigation of growth and structure of pp-HMDSO thin films. Eur Phys J D 54:165–172

    Article  CAS  Google Scholar 

  12. Lazauskas A, Grigaliūnas V, Ecarla F, Caunii M (2012) A comparative evaluation of surface morphology, cohesive and adhesive properties of one-step and two-step thermal deposited chromium thin films on glass substrates. Appl Surf Sci 258:7633–7638

    Article  CAS  Google Scholar 

  13. Sedlaček M, Silva Vilhena LM, Podgornik B, Vižintin J (2011) Surface topography modelling for reduced friction. Stroj Vestn J Mech Eng 57:674–680

    Article  Google Scholar 

  14. Stalder A, Kulik G, Sage D, Barbieri L, Hoffmann P (2006) A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf A 286:92–103

    Article  CAS  Google Scholar 

  15. Chen W, Fadeev AY, Hsieh MC, Öner D, Youngblood J, McCarthy TJ (1999) Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir 15:3395–3399

    Article  CAS  Google Scholar 

  16. Zhang H, Li W, Cui D, Hu Z, Xu L (2012) Design of lotus-simulating surfaces: thermodynamic analysis based on a new methodology. Colloids Surf A 413:314–327

    Article  CAS  Google Scholar 

  17. Erbil HY, McHale G, Rowan S, Newton M (1999) Determination of the receding contact angle of sessile drops on polymer surfaces by evaporation. Langmuir 15:7378–7385

    Article  CAS  Google Scholar 

  18. Pogorzelski SJ, Berezowski Z, Rochowski P, Szurkowski J (2012) A novel methodology based on contact angle hysteresis approach for surface changes monitoring in model PMMA-Corega Tabs system. Appl Surf Sci 258:3652–3658

    Article  CAS  Google Scholar 

  19. Herminghaus S (2000) Roughness-induced non-wetting. Europhys Lett 52:165

    Article  Google Scholar 

  20. Ohring M (2001) Materials science of thin films. Academic press, London

    Google Scholar 

  21. Gadelmawla ES, Koura MM, Maksoud TMA, Elewa IM, Soliman HH (2002) Roughness parameters. J Mater Process Technol 123:133–145

    Article  Google Scholar 

  22. Malshe A, Rajurkar K, Samant A, Hansen HN, Bapat S, Jiang W (2013) Bio-inspired functional surfaces for advanced applications. CIRP Ann Manuf Technol 62:607–628

    Article  Google Scholar 

  23. Genzer J, Efimenko K (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360

    Article  CAS  Google Scholar 

  24. Teare D, Spanos C, Ridley P, Kinmond E, Roucoules V, Badyal J, Brewer S, Coulson S, Willis C (2002) Pulsed plasma deposition of super-hydrophobic nanospheres. Chem Mat 14:4566–4571

    Article  CAS  Google Scholar 

  25. Bousquet A, Granier A, Goullet A, Landesman J (2006) Influence of plasma pulsing on the deposition kinetics and film structure in low pressure oxygen/hexamethyldisiloxane radiofrequency plasmas. Thin Solid Films 514:45–51

    Article  CAS  Google Scholar 

  26. Tielens F, Gervais C, Lambert JF, Mauri F, Costa D (2008) Ab initio study of the hydroxylated surface of amorphous silica: a representative model. Chem Mat 20:3336–3344

    Article  CAS  Google Scholar 

  27. Frost RL, Ding Z, Martens WN, Johnson TE, Kloprogge JT (2003) Molecular assembly in synthesised hydrotalcites of formula CuxZn6-xAl2 (OH) 16 (CO3). 4H2O-a vibrational spectroscopic study, spectrochim. Acta A 59:321–328

    Article  CAS  Google Scholar 

  28. Martinez J, Ruiz F, Vorobiev YV, Pérez-Robles F, González-Hernández J (1998) Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel. J Chem Phys 109:7511

    Article  CAS  Google Scholar 

  29. Zhuravlev L (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A 173:1–38

    Article  CAS  Google Scholar 

  30. Jelínek M, Zemek J, Trchova M, Vorlíček V, Lančok J, Tomov R, Šimečková M (2000) CNx films created by combined laser deposition and rf discharge: XPS, FTIR and Raman analysis. Thin Solid Films 366:69–76

    Article  Google Scholar 

  31. Awazu K, Kawazoe H, Seki K (1992) Growth mechanisms of silica glasses using the liquid phase deposition (LPD). J Non-Cryst Solids 151:102–108

    Article  CAS  Google Scholar 

  32. Guerrero-Pérez M, Herrera M, Malpartida I, Larrubia M, Alemany L (2006) Characterization and FT-IR study of nanostructured alumina-supported V-Mo-WO catalysts. Catal Today 118:360–365

    Article  Google Scholar 

  33. C. Vivien, R. Mascart, C. Dupret, P. Dhamelincourt, L. Gengembre, P. Supiot, Plasma polymer coatings deposited from hexamethyldisilazane downstream a microwave nitrogen plasma jet

  34. Wrobel A, Czeremuszkin G, Szymanowski H, Kowalski J (1990) Plasma polymerization of carbosilanes: tetramethylsilane as a model monomer for reactivity study of silylmethyl groups. Plasma Chem Plasma Process 10:277–289

    Article  CAS  Google Scholar 

  35. Jing S-Y, Lee H-J, Choi CK (2002) Chemical bond structure on Si-OC composite films with a low dielectric constant deposited by using inductively coupled plasma chemical vapor deposition. J Korean Phys Soc 41:769–773

    CAS  Google Scholar 

  36. S. Spange, U. Eismann, S. Höhne, E. Langhammer (1998) Application of cationic polymerization to grafting and coating of silica particles. In: Macromolecular symposia, Wiley Online Library, pp. 223–236

  37. van der Steen GHAM, van den Boom H (1977) Raman spectroscopic study of hydrogen-containing vitreous silica. J Non-Cryst Solids 23:279–286

    Article  Google Scholar 

  38. Kong MJ, Lee SS, Lyubovitsky J, Bent SF (1996) Infrared spectroscopy of methyl groups on silicon. Chem Phys Lett 263:1–7

    Article  CAS  Google Scholar 

  39. El-Zahhar A, El-Deen S, Sheha R (2013) Sorption of iron from phosphoric acid solution using polyacrylamide grafted activated carbon. J Environ Chem Eng 46:27–38

    Google Scholar 

  40. Baeva M, Kozakov R, Gorchakov S, Uhrlandt D (2012) Two-temperature chemically non-equilibrium modelling of transferred arcs. Plasma Sources Sci Technol 21:055027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the European Social Fund and Republic of Lithuania (Project VP1-3.1-ŠMM-10-V-02-013). Support of the Research Council of Lithuania is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Algirdas Lazauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazauskas, A., Baltrusaitis, J., Grigaliūnas, V. et al. Characterization of Plasma Polymerized Hexamethyldisiloxane Films Prepared by Arc Discharge. Plasma Chem Plasma Process 34, 271–285 (2014). https://doi.org/10.1007/s11090-013-9516-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9516-y

Keywords

Navigation