Skip to main content
Log in

Non Thermal Plasma Functionalized 2D Carbon–Carbon Composites as Supports for Co Nanoparticles

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Novel two-dimensional carbon–carbon composites made of carbon nanofibers (CNFs) supported on a carbon preform were functionalized by non thermal plasma treatment (room temperature, atmospheric pressure, humid air), before being used as supports for metallic cobalt nanoparticles. It was shown that the degree of functionalization of the carbon nanofibers depends on the plasma power input, the treatment time and the CNF loading. The size of the cobalt nanoparticles generated after subsequent reduction of the Co-containing plasma treated CNF/C composites under hydrogen flow seems to be independent of the amount of supported cobalt. Changes in surface characteristics were analyzed using thermogravimetric analyses coupled to a mass spectrometer, X-ray photoelectron spectroscopy analyses and Raman spectroscopy. Transmission electron microscopy was used to complementary characterize the final size, dispersion and location of the so generated Co nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Toebes ML, Van Heeswijk JMP, Bitter JH, Van Dillen AJ, De Jong KP (2004) The influence of oxidation on the texture and the number of oxygen containing surface groups of carbon nanofibers. Carbon 42(2):307–315

    Article  CAS  Google Scholar 

  2. Zhang G, Sun S, Yang D, Dodelet JP, Sacher E (2008) The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon 46(2):196–205

    Article  CAS  Google Scholar 

  3. Ros TG, Van Dillen AG, Geus JW, Koningsberger DC (2002) Surface oxidation of carbon nanofibres. Chem Eur J 8(5):1151–1162

    Article  CAS  Google Scholar 

  4. Xia W, Jin C, Jundu S, Muhler MA (2009) Highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon 47(3):919–922

    Article  CAS  Google Scholar 

  5. Xing Y, Li L, Chusuei CC, Hull RV (2005) Sonochemical oxidation of multiwalled carbon nanotubes. Langmuir 21(9):4185–4190

    Article  CAS  Google Scholar 

  6. Rasheed A, Howe JY, Dadmun MD, Britt PF (2007) The efficiency of the oxidation of carbon nanofibers with various oxidizing agents. Carbon 45(5):1072–1080

    Article  CAS  Google Scholar 

  7. Bandosz TJ (2009) pp 45–92, In: Carbon materials for catalysis, Serp P and Figueiredo JL (Eds), Wiley: New York

  8. Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M (2009) Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J Phys Chem C 113(18):7659–7665

    Article  CAS  Google Scholar 

  9. Felten A, Bittencourt C, Pireaux JJ, Van Lier G, Charlier JC (2005) Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J Appl Phys 98:074308

    Article  Google Scholar 

  10. Okpalugo TIT, Papakonstantinou P, Murphy H, Mclaughlin J, Brown NMD (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43(14):2951–2959

    Article  CAS  Google Scholar 

  11. Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M (2010) Fast and clean functionalization of carbon nanotubes by dielectric barrier discharge plasma in air compared to acid treatment. Carbon 48(5):1369–1379

    Article  CAS  Google Scholar 

  12. Lee S, Peng JW, Liu CH (2009) Probing plasma-induced defect formation and oxidation in carbon nanotubes by Raman dispersion spectroscopy. Carbon 47(15):3488–3497

    Article  CAS  Google Scholar 

  13. Xu L, Fang Z, Song P, Peng M (2010) Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure. Nanoscale 2(3):389–393

    Article  CAS  Google Scholar 

  14. Wen-Hui W, Bi-Chun H, Li-Shan W, Dai-Qi Y (2011) Oxidative treatment of multi-wall carbon nanotubes with oxygen dielectric barrier discharge plasma. Surf Coat Technol 205(21–22):4896–4901

    Google Scholar 

  15. Yu H, Cheng D, Williams TS, Severino J, De Rosa IM, Carlson L, Hicks RF (2013) Rapid oxidative activation of carbon nanotube yarn and sheet by a radio frequency, atmospheric pressure, helium and oxygen plasma. Carbon 57:11–21

    Article  CAS  Google Scholar 

  16. Kolacyak D, Ihde J, Lommatzsch U (2011) Carbon nanotube functionalization by atmospheric pressure plasma and post-plasma reactions. Surf Coat Technol 205:S605–S608

    Article  CAS  Google Scholar 

  17. Zaldivar RJ, Nokes JP, Adams PM, Hammoud K, Kim HI (2012) Surface functionalization without lattice degradation of highly crystalline nanoscaled carbon materials using a carbon monoxide atmospheric plasma treatment. Carbon 50:2966–2975

    Article  CAS  Google Scholar 

  18. Santos AL, Botelho EC, Kostov KG, Nascente PAP, da Silva LLG (2013) Atmospheric plasma treatment of carbon fibers for enhancement of their adhesion properties. Plasma Sci, IEEE Trans 41(2):319–324

    Article  CAS  Google Scholar 

  19. Rhee KY, Park SJ, Hui D, Qiu Y (2012) Effect of oxygen plasma-treated carbon fibers on the tribological behavior of oil-absorbed carbon/epoxy woven composites. Compos B Eng 43(5):2395–2399

    Article  CAS  Google Scholar 

  20. Asedegbega-Nieto E, Guerrero-Ruiz A, Rodriguez-Ramos I (2006) Direct carbon patterning on a conducting substrate in an organic liquid. Carbon 44(4):799–823

    Article  Google Scholar 

  21. Toebes ML, Zhang Y, Hájek J, Nijhuis TA, Bitter JH, Van Dillen AJ, Dmitry Yu, Murzin DY, de Jong KP (2004) Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis. J Catal 226(1):215–225

    Article  CAS  Google Scholar 

  22. Li Z, Liang C, Feng Z, Ying P, Wang D, Li C (2004) Ammonia synthesis on graphitic-nanofilament supported Ru catalysts. J Mol Cat A 211(1):103–109

    Article  CAS  Google Scholar 

  23. Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Rodríguez HG, Álvarez-Contreras L, Arriaga LG (2010) Development of Pd and Pd–Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. J Power Sources 195(2):461–465

    Article  CAS  Google Scholar 

  24. den Breejen JP, Radstake PB, Bezemer GL, Bitter JH, Froseth V, Holmen A, de Jong KP (2009) On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J Am Chem Soc 131(20):7197–7203

    Article  Google Scholar 

  25. Felten A, Ghijsen J, Pireaux J–J, Drube W, Johnson RL, Liang D, Hecq M, Van Tendeloo G, Bittencourt C (2009) Electronic structure of Pd nanoparticles on carbon nanotubes. Micron 40(1):74–79

    Article  CAS  Google Scholar 

  26. Leghrib R, Pavelko R, Felten A, Vasiliev A, Cané C, Gràcia I, Pireaux JJ, Llobet E (2010) Gas sensors based on multiwall carbon nanotubes decorated with tinoxide nanoclusters. Sens Actuators, B 145(1):411–416

    Article  CAS  Google Scholar 

  27. Larciprete R, Gardonio S, Petaccia L, Lizzit S (2009) Atomic oxygen functionalization of double walled C nanotubes. Carbon 47:2579–2589

    Article  CAS  Google Scholar 

  28. Li X (2008) Functionalization of carbon nanofibers with diamine and polyimide oligmer. Carbon 46(8):1115–1125

    Article  CAS  Google Scholar 

  29. Harris PJF (2009) Carbon nanotube science: synthesis, properties and applications. Cambrigde university Press, Cambrigde

    Book  Google Scholar 

  30. Bezemer LG, Bitter JH, Kuipers HPEC, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, Jos van Dillen A, de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the “FUI” program (French cross-ministerial fund) and to the AESE Valley—Régions Aquitaine et Midi-Pyrénées under the NAno COmposite MAterials (NACOMAT) consortium for their financial support. J. Souquet-Grumey gratefully acknowledges DGE and Snecma Propulsion Solide Company (SAFRAN Group) for his Ph.D. Grant. The authors gratefully thank S. Pronier (IC2MP/Poitiers) for his valuable technical help in the TEM imaging and 2D Fourier transform diffractograms analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabine Valange or Elodie Fourré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souquet-Grumey, J., Ayrault, P., Heintz, O. et al. Non Thermal Plasma Functionalized 2D Carbon–Carbon Composites as Supports for Co Nanoparticles. Plasma Chem Plasma Process 34, 287–300 (2014). https://doi.org/10.1007/s11090-013-9514-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9514-0

Keywords

Navigation