Skip to main content

Advertisement

Log in

Optimization of NH3 Decomposition by Control of Discharge Mode in a Rotating Arc

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, the characteristic behavior of a rotating arc was investigated. Various modes, depending on the electric power supplied, can be observed in a rotating arc. Each mode produces different discharge characteristics and thermal environments and, accordingly, chemical processes hosted in the plasma reaction volume can be controlled differently in each mode. General thermal to non-thermal transitions observed in a gliding arc are based on the longitudinal expansion of the arc column. In a rotating arc, the reverse transition or non-thermal to thermal transition can be hosted by controlling the reactor geometry. The reverse transition can be achieved by self-adjustment of the arc column where longitudinal expansion of the arc column is confined. The reverse transition enhances the conversion efficiency of electric power to thermal energy. Then, optimization of thermal activation was obtained by controlling the mode of operation, and it was verified using the NH3 decomposition reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fridman A, Kennedy L (2004) Plasma physics and engineering. Taylor and Francis, New York

    Google Scholar 

  2. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  3. Petitpas G, Rollier J-D, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32(14):2848–2867

    Article  CAS  Google Scholar 

  4. Urashima K, Chang J-S (2000) Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Trans Dielectr Electr Insul 7(5):602–614

    Article  CAS  Google Scholar 

  5. Yao SL, Takemoto T, Ouyang F, Nakayama A, Suzuki E, Mizuno A, Okumoto M (2000) Selective oxidation of methane using a non-thermal pulsed plasma. Energy Fuels 14(2):459–463

    Article  CAS  Google Scholar 

  6. Lee DH, Kim KT, Song YH, Kang WS, Jo SK (2013) Mapping plasma chemistry in hydrocarbon fuel processing processes. Plasma Chem Plasma Process 33:249–269

    Article  CAS  Google Scholar 

  7. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Plasma-controlled chemistry in plasma reforming of methane. Int J Hydrogen Energy 35:10967–10976

    Article  CAS  Google Scholar 

  8. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001

    Article  Google Scholar 

  9. Fujita S, Toyoshima H, Nishihara M, Sasaki A (1982) Variations of trap states and dangling bonds in CVD Si3N4 layer on Si substrate by NH3/SiH4 ratio. J Electronic Mat 11(4):795–812

    Article  CAS  Google Scholar 

  10. Lee DH, Kim K-H, Cha MS, Song Y-H (2007) Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane. Proc Combust Inst 31:3343–3351

    Article  Google Scholar 

  11. Lee DH, Kim K-T, Cha MS, Song Y-H (2010) Effect of excess oxygen in plasma reforming of diesel fuel. Int J Hydrogen Energy 35:4668–4675

    Article  CAS  Google Scholar 

  12. Lee DH, Lee J-O, Kim K-T, Song Y-H, Kim E, Han H-S (2012) Hydrogen in plasma-assisted hydrocarbon selective catalytic reduction. Int J Hydrogen Energy 37:3225–3233

    Article  CAS  Google Scholar 

  13. Mutaf-Yardimci O, Saveliev AV, Fridman AA, Kennedy LA (2000) Thermal and nonthermal regimes of gliding arc discharge in air flow. J Appl Phys 87:1632–1637

    Article  CAS  Google Scholar 

  14. Kuo KK (1986) Principles of combustion. Wiley, New York

    Google Scholar 

  15. Rusu I, Cormier J-M (2003) On a possible mechanism of the methane steam reforming in a gliding arc reactor. Chem Eng J 91:23–31

    Article  CAS  Google Scholar 

  16. Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O (1999) Gliding arc gas discharge. Prog Energy Combust 25:211–231

    Article  CAS  Google Scholar 

  17. Fridman A, Czernichowski A, Chapelle J, Cormier JM, Lesueur H, Stevefelt J (1993) Int Symp On Plasma Chem, ISPC 11, Loughborough

  18. Raizer IuP (1987) Gas discharge physics. Springer, Berlin

    Google Scholar 

  19. Chelouah A, Marode E, Hartmann G, Achat S (1994) A new method for temperature evaluation in a nitrogen discharge. J Phys D Appl Phys 27:940–945

    Article  CAS  Google Scholar 

  20. Nassar H, Pellerin S, Musiol K, Martinie O, Pellerin N, Cormier J-M (2004) N2+/N2 ratio and temperature measurements based on the first negative N2+ and second positive N2 overlapped molecular emission spectra. J Phys D Appl Phys 37:1904–1916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by ISTK (Korea Research Council for Industrial Science and Technology) of the Republic of Korea, Grant number B551179-11-03-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae Hoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.H., Kim, KT., Kang, H.S. et al. Optimization of NH3 Decomposition by Control of Discharge Mode in a Rotating Arc. Plasma Chem Plasma Process 34, 111–124 (2014). https://doi.org/10.1007/s11090-013-9495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9495-z

Keywords

Navigation