Skip to main content
Log in

Decomposition of Toluene in a Plasma Catalysis System with NiO, MnO2, CeO2, Fe2O3, and CuO Catalysts

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The performance of NiO, MnO2, CeO2, Fe2O3, and CuO catalysts on alumina in removing toluene from a gas stream was studied in a plasma catalysis system. The NiO catalyst performed better than the other catalysts, generating more toluene-destroying oxygen species by decomposing ozone. The optimum nickel loading in the NiO/γ-Al2O3 catalyst was approximately 5 wt%, close to the monolayer dispersion threshold of NiO on γ-Al2O3. The presence of water vapor had a negative effect on catalytic performance due to its quenching of high speed electrons and its competition with toluene for adsorption sites. Water vapor also reduced the outlet ozone concentration by inhibiting the production of key intermediate in the ozone formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zheng JY, Shao M, Che WW, Zhang LJ, Zhong LJ, Zhang YH, Streets D (2009) Environ Sci Technol 43:8580–8586

    Article  CAS  Google Scholar 

  2. Shi J, Zhao ZX, Xia QB, Li YW, Li Z (2011) J Chem Eng Data 56:3419–3425

    Article  CAS  Google Scholar 

  3. Kim HH (2004) Plasma Process Polym 1:91–110

    Article  Google Scholar 

  4. Schiorlin M, Marotta E, Rea M, Paradisi C (2009) Environ Sci Technol 43:9386–9392

    Article  CAS  Google Scholar 

  5. Mista W, Kacprzyk R (2008) Catal Today 137:345–349

    Article  CAS  Google Scholar 

  6. Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN (2009) Environ Sci Technol 43:2216–2227

    Article  CAS  Google Scholar 

  7. Van Durme J, Dewulf J, Leys C, Van Langenhove H (2008) Appl Catal B Environ 78:324–333

    Article  Google Scholar 

  8. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  9. Fan X, Zhu TL, Sun YF, Yan X (2011) J Hazard Mater 196:380–385

    Article  CAS  Google Scholar 

  10. Karuppiah J, Karvembu R, Subrahmanya Ch (2012) Chem Eng J 180:39–45

    Article  CAS  Google Scholar 

  11. Stoyanova M, Konova P, Nikolov P, Naydenov A, Christoskova St, Mehandjiev D (2006) Chem Eng J 122:41–46

    Article  CAS  Google Scholar 

  12. Kim HH, Ogata A, Futamura S (2006) IEEE Trans Plasma Sci 34:984–995

    Article  CAS  Google Scholar 

  13. Ogata A, Einaga H, Kabashima H, Futamura S, Kushiyama S, Kim HH (2003) Appl Catal B Environ 46:87–95

    Article  CAS  Google Scholar 

  14. Wang XY, Zhao BY, Jiang DE, Xie YC (1999) Appl Catal A Gen 188:201–209

    Article  CAS  Google Scholar 

  15. Pan HY, Xu MY, Li Z, Huang SS, He C (2009) Chemosphere 76:721–726

    Article  CAS  Google Scholar 

  16. Zhao ZX, Li XM, Huang SS, Xia QB, Li Z (2011) Ind Eng Chem Res 50:2254–2261

    Article  CAS  Google Scholar 

  17. Zhang ZJ, Xian SK, Xi HX, Wang HH, Li Z (2011) Chem Eng Sci 66:4878–4888

    Article  CAS  Google Scholar 

  18. Harling AM, Glover DJ, Whitehead JC, Zhang K (2009) Appl Catal B Environ 90:157–161

    Article  CAS  Google Scholar 

  19. NIST, Chemical Kinetics Database on the Web Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.5, 2012 http://kinetics.nist.gov/kinetics/

  20. Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) J Mol Catal A Chem 263:128–136

    Article  CAS  Google Scholar 

  21. Magureanu M, Mandache NB, Eloy P, Gaigneaux EM, Parvulescu VI (2005) Appl Catal B Environ 61:12–20

    Article  CAS  Google Scholar 

  22. Futamura S, Einaga H, Kabashima H, Hwan LY (2004) Catal Today 89:89–95

    Article  CAS  Google Scholar 

  23. Molina R, Poncelet G (1998) J Catal 173:257–267

    Article  CAS  Google Scholar 

  24. Akande AJ, Idem RO, Dalai AK (2005) Appl Catal A Gen 287:159–175

    Article  CAS  Google Scholar 

  25. Yu XX, Wu NZ, Xie YC, Tang YQ (2000) J Mater Chem 10:1629–1634

    Article  CAS  Google Scholar 

  26. Ogata A, Shintani N, Yamanouchi K, Mizuno K, Kushiyama S, Yamamoto T (2000) Plasma Chem Plasma P 20:453–467

    Article  CAS  Google Scholar 

  27. Huang HB, Ye DQ, Leung Dennis YC (2011) IEEE T Plasma Sci 39:576–580

    Article  CAS  Google Scholar 

  28. Fan X, Zhu TL, Wan YJ, Xiao X (2010) J Hazard Mater 180:616–621

    Article  CAS  Google Scholar 

  29. Huang HB, Ye DQ, Leung Dennis YC, Feng FD, Guan XJ (2011) J Mol Catal A Chem 336:87–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 20936001, U1201231), the Science Foundation of Guangdong Province, and the State Key Lab of Subtropical Building Science, South China University of Technology (Grant C710090Z). We are grateful to Dr. Donald George Barnes for providing helpful advice to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Huang, Y., Xia, Q. et al. Decomposition of Toluene in a Plasma Catalysis System with NiO, MnO2, CeO2, Fe2O3, and CuO Catalysts. Plasma Chem Plasma Process 33, 1073–1082 (2013). https://doi.org/10.1007/s11090-013-9485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9485-1

Keywords

Navigation