Skip to main content
Log in

Atmospheric Pressure Plasma Degradation of Azo Dyes in Water: pH and Structural Effects

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The degradation of aqueous solutions containing azo dyes (ortho-, meta-, and para-methyl red) was carried out by means of atmospheric pressure plasma treatment. As evidenced by optical emission spectroscopy, the metastable argon in the discharge is responsible for initiating reactions in dye solutions. The bleaching of aqueous solutions is attributed to the destruction of dye molecules as observed in the UV–visible absorption spectra. We found that the degradation pathways of methyl red critically depend on the pH values in aqueous solutions as well as isomeric structures. The reaction pathways are entirely different in basic (pH = 11), near-neutral (pH = 6), and acidic conditions (pH = 2). Kinetic analysis shows that acidic condition gives the fastest degradation rates of methyl red isomers with removal rate: ortho > meta > para among all conditions. At basic condition, the degradation rates are equally slow for all methyl red isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baiocchi C, Brussino MC, Pramauro E, Prevot AB, Palmisano L, Marc G (2002) Int J Mass Spectrom 214:247

    Article  CAS  Google Scholar 

  2. Hsueh CL, Huang YH, Wang CC, Chen CY (2005) Chemosphere 58:1409

    Article  CAS  Google Scholar 

  3. Hsueh CC, Chen BY (2008) J Hazardous Mater 154:703

    Article  CAS  Google Scholar 

  4. Nam S, Renganathan V, Tratnyek (2001) Chemosphere 45:59

    Google Scholar 

  5. Ashraf SS, Rauf MA, Alhadrami S (2006) Dyes Pigments 69:74

    Article  CAS  Google Scholar 

  6. Comparelli R, Cozzoli PD, Curri ML, Agostiano A, Mascolo G, Lovecchio G (2004) Water Sci Technol 49:183

    CAS  Google Scholar 

  7. Mascolo G, Comparelli R, Curri ML, Lovecchio G, Lopez A, Agostiano A (2007) J Hazardous Mater 142:130

    Article  CAS  Google Scholar 

  8. Abdelmalek F, Ghezzar MR, Belhadj M, Addou A, Brisset JL (2006) Ind Eng Chem Res 45:23

    Article  CAS  Google Scholar 

  9. Magureanu M, Mandache NB, Parvulescu VI (2007) Plasma Chem Plasma Process 27:589

    Article  CAS  Google Scholar 

  10. Goheen SC, Durham DE, McCulloch M (1992) Proc Second Int Symp Chemical Oxidation: Technology for the Ninetees p: 356

  11. Janca J, Kuzmin S, Maximov A, Titova J, Czernichovski A (1999) Plasma Chem Plasma Process 19:53

    Article  CAS  Google Scholar 

  12. Doubla A, Abdelmalek F, Khalifa K, Addou AL, Brisset J (2003) J Appl Electrochem 33:73

    Article  CAS  Google Scholar 

  13. Abdelmalek F, Gharbi S, Benstaali B, Addou A, Brisset JL (2004) Water Res 38:2339

    Article  CAS  Google Scholar 

  14. Cherchi C, Gu AZ (2010) Environ Sci Technol 44:8302

    Article  CAS  Google Scholar 

  15. Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Ecotoxicol Environ Safety 72:684

    Article  CAS  Google Scholar 

  16. Garćıa-Montaño J, Ruiz N, Muñoz I, Domènech X, Garćıa-Hortal JA, Torrades F (2006) J Hazardous Mater 138:218

    Article  Google Scholar 

  17. Chung KT, Stevens SE, Cerninglia CE (1992) Critical Rev Microbiol 18:75

    Article  Google Scholar 

  18. Loew G, Sudhindra BS, Burt S, Pack GR, Macelroy R (1979) Int J Quantum Chem 16:259

    Article  Google Scholar 

  19. Turesky RJ (2002) Drug Metab Rev 34:625

    Article  CAS  Google Scholar 

  20. Skipper PL, Kim MY, Sun HLP, Wogan GN, Tannenbaum SR (2010) Carcinogenesis 31:50

    Article  CAS  Google Scholar 

  21. Suhr H (1972) Angew Chem Int Ed 11:781

    Article  CAS  Google Scholar 

  22. Soukayna L, Michael K, Emmanuel O (2011) Ad Mater Res 324:469

    Article  Google Scholar 

  23. Lee S, Peng JW, Liu CH (2008) Carbon 46:124

    Google Scholar 

  24. Szymańskiy Z, Peradzyńskiy Z, Kurzynay J, Hoffmany J, Dudeckz M, de Graafz M (1997) J Phys D Appl Phys 30:998

    Article  Google Scholar 

  25. Schütze A, Jeong JY, Babayan SE, Park J, Selwyn GS.; Hicks RF (1998) IEEE Trans Plasma Sci 26:1685

    Google Scholar 

  26. Egitto FD (1990) Pure Appl Chem 62:1699

    Article  CAS  Google Scholar 

  27. Snyder HL, Smith BT, Parr TP, Martin RM (1982) Chem Phys 65:397

    Article  CAS  Google Scholar 

  28. Kawai K, Masago H, Kanamori K, Kanesaka I, Kasahara I, Goto K (1987) J Raman Spectrosc 18:205

    Article  CAS  Google Scholar 

  29. Park SK, Lee C, Min KC, Lee NS (2005) Bull Korean Chem Soc 26:1170

    Article  CAS  Google Scholar 

  30. Mukherjee S, Bera SC (1998) J Chem Soc, Faraday Trans 94:67

    Article  Google Scholar 

  31. Zhang A, Fang Y (2006) Chem Phys 331:55

    Article  CAS  Google Scholar 

  32. Seu G (1995) Dyes Pigments 29:227

    Article  CAS  Google Scholar 

  33. Destaillats H, Turjanski AG, Estrin DA, Hoffmann MR (2002) J Phys Org Chem 15:287

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from the National Science Council of Taiwan (NSC 100-2738-M-033-001-MY3 and NSC 100-2632-M-033-001-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szetsen Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, JW., Lee, S. Atmospheric Pressure Plasma Degradation of Azo Dyes in Water: pH and Structural Effects. Plasma Chem Plasma Process 33, 1063–1072 (2013). https://doi.org/10.1007/s11090-013-9483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9483-3

Keywords

Navigation