Skip to main content
Log in

Large Eddy Simulation of a Free-Burning Arc Discharge in Argon with a Turbulent Cross Flow and External Field

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In most of the numerical approaches proposed for modeling high-intensity plasma-arcs, the effects of turbulence on the arc structure are often excluded because of the intricate physics originating from the interaction of turbulent scales, high-temperature gas dynamics, magnetohydrodynamics (MHD) and chemical kinetics. The goal of this study is threefold: to develop a generic turbulent MHD model to simulate free-burning arc discharges, to validate the code with available experimental data, and to investigate the effect of an external field and turbulent cross flow on the free-burning arc configuration. The governing equations are solved in conservative form using a hybrid scheme that combines a high-order monotonic upwind scheme with a second-order central scheme. The fluid and MHD turbulence are resolved using a large eddy simulation (LES) approach with a recently developed sub-grid closure model. An implicit scheme is used to compute the magnetic diffusion term appearing in the magnetic induction equation to alleviate the severe time-step constraint. The comparison of the model prediction with experimental data for Argon arcs at different current intensities shows generally good agreement. When an external field is applied, the overall shape of the free-burning arc drastically changes. The straightening of the arc indicates the potential for stabilization of a free-burning arc by magnetic forces. Even though the turbulence is significantly attenuated as a result of the thermal expansion near the cathode, it adds an unsteady characteristic to the arc and, in general, has a negative impact on the stabilization of the electrical discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sanders N, Etmadi K, Hsu KC, Pfender E (1982) Studies of the anode region of a high-intensity argon arc. J Appl Phys 53(6):4136–4145

    Article  CAS  Google Scholar 

  2. Girard R, Belhaouari JJ, Gonzalez JB, Gleizes A (1999) A two-temperature kinetic model of sf6 plasma. J Phys D Appl Phys 32(22):2890–2901

    Article  CAS  Google Scholar 

  3. Hsu KC, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301

    Article  CAS  Google Scholar 

  4. Wu CS, Ushio M, Tanaka M (1996) Analysis of the tig welding arc behavior. Comput Mater Sci 7(3):308–314

    Article  Google Scholar 

  5. Freton P, Gonzalez JJ, Gleizes A (2000) Comparison between a two- and a three-dimensional arc plasma configuration. J Phys D Appl Phys 33(19):2442–2452

    Article  Google Scholar 

  6. Kelkar M, Heberlein J (2000) Physics of an arc in cross flow. J Phys D Appl Phys 33(17):2172–2182

    Article  CAS  Google Scholar 

  7. Westhoff R, Szekely J (1991) A model of fluid, heat flow, and electromagnetic phenomena in a nontransferred arc plasma torch. J Appl Phys 70(7):3455–3466

    Article  CAS  Google Scholar 

  8. Lago F, Gonzalez JJ, Freton P, Gleizes A (2004) A numerical modelling of an electric arc and its interaction with the anode: part i. The two-dimensional model. J Phys D Appl Phys 37(6):883–897

    Article  CAS  Google Scholar 

  9. Gonzalez JJ, Lago F, Freton P, Masquere M, Franceries X (2005) Numerical modelling of an electric arc and its interaction with the anode: part ii. The three-dimensional model-influence of external forces on the arc column. J Phys D Appl Phys 38(2):306–318

    Article  CAS  Google Scholar 

  10. Lago F, Gonzalez JJ, Freton P, Uhlig F, Lucius N, Piau GP (2006) A numerical modelling of an electric arc and its interaction with the anode: part iii. Application to the interaction of a lightning strike and an aircraft in flight. J Phys D Appl Phys 39(10):2294–2310

    Article  CAS  Google Scholar 

  11. Bauchire JM, Gonzalez JJ, Gleizes A (1997) Modeling of a dc plasma torch in laminar and turbulent flow. Plasma Chem Plasma Process 17(4):409–432

    Article  CAS  Google Scholar 

  12. Schlitz LZ, Garimella SV, Chan SH (1999) Gas dynamics and electromagnetic processes in high-current arc plasma: part ii. Effects of external magnetic fields and gassing materials. J Appl Phys 85(5):2546–2547

    Google Scholar 

  13. Speckhofer G, Schmidt HP (1996) Experimental and theoretical investigation of high-pressure arcs—part ii: the magnetically deflected arc (three-dimensional modeling). IEEE Trans Plasma Sci 24(4):1239–1248

    Article  Google Scholar 

  14. Boulos MI, Fauchais P, Pfender E (1994) Thermal Plasma Fundamentals and Applications. Plenum, New York

    Book  Google Scholar 

  15. Miki K, Schulz J, Menon S (2008) Large eddy simulation of equilibrium plasma-assisted combustion in supersonic flow. Proc Combust Inst 32(2):2413–2420

    Article  Google Scholar 

  16. Miki K, Menon S (2008) Localized dynamic subgrid closure for simulation of MHD turbulence. Phys Plasmas 15(7):072306

    Article  Google Scholar 

  17. Trelles JP, Chazelas C, Vardelle A, Heberlein JVR (2009) Arc plasma tourch modeling. J Them Spray Technol 18(5):728–752

    Article  Google Scholar 

  18. Morel P, Banon Navarro A, Albercht-Marc M, Carati D, Merz F, Gorler T, Jenko F (2011) Gyrokinetic large eddy simulations. Phys Plasmas 18:072301

    Google Scholar 

  19. Kaziz S, Ben Ahmed H, Helali H, Gazzah H, Charrada K (2011) Contribution to the numerical study of turbulence in high intensity discharge lamps. Phys Plasmas 18:073502

    Google Scholar 

  20. Evans DL, Tankin RS (1967) Measurement of emission and absorption of radiation by an argon plasma. Phys Fluids 10:1137–1144

    Article  Google Scholar 

  21. Miki K, Schulz J, Menon S (2007) Large eddy simulation of a supersonic plasma flow over a backward facing step. In: Proceedings of the 5th international symposium on turbulence and, shear flow phenomena, pp 985–990

  22. Kim W–W, Menon S, Mongia HC (1999) Large-eddy simulation of a gas turbine combustor flow. Combust Sci Technol 143(1):25–62

    Article  CAS  Google Scholar 

  23. Yoshizawa A, Hamba F (1988) A turbulent dynamo model for the reversed field pinches of plasma. Phys Plasmas 31(8):2276–2284

    CAS  Google Scholar 

  24. Brandt A (1977) Multi-level adaptive solutions to boundary value problems. Math Comput 31(138):333–390

    Article  Google Scholar 

  25. Peaceman DC, Rachford HH (1955) The numerical solution of parabolic and elliptic differential equations. J Soc Ind Appl Math 3(1):28–41

    Article  Google Scholar 

  26. Gabor T (2000) The ∇·b = 0 constraint in shock-capturing magnetohydrodynamic code. J Comput Phys 161(2):605–652

    Article  Google Scholar 

  27. Brackbill JU, Barnes DC (1980) The effect of nonzero ∇·b = 0 on the numerical solution of the magnetohydrodynamic equations. J Comput Phys 35:426–430

    Article  Google Scholar 

  28. Evans CR, Hawley JF (1988) Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys J 332:659–677

    Article  Google Scholar 

  29. Miyoshi T, Kusano K (2005) A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J Comput Phys 208(1):315–344

    Article  Google Scholar 

  30. Einfeldt B, Munz CD, Roe PL, Sjgreen B (1991) On godunov-type methods near low densities. J Comput Phys 92(2):273–295

    Article  Google Scholar 

  31. Genin F, Menon S (2010) Studies of shock/turbulent shear later interaction using large-eddy simulation. Comput Fluid. doi:10.1016/j.compfluid.2009.12.008

  32. Benenson DM, Baker AJ, Cenkner AA (1969) Diagnostics on steady-state cross-flow arcs. IEEE Trans Power Apparatus Syst 88(5):513–521

    Article  Google Scholar 

  33. Bini R, Monno M, Boulos MI (2006) Numerical and experimental study of transferred arcs in argon. J Phys D Appl Phys 39(15):3253–3266

    Article  CAS  Google Scholar 

  34. Menart J, Lin L (1999) Numerical study of a free-burning argon arc with copper contamination from the anode. Plasma Chem Plasma Process 19(2):153–170

    Article  CAS  Google Scholar 

  35. Rogallo RS (1981) Numerical experiments in homogenous turbulence. Technical Memorandum, NASA-TM-81315

  36. Blais A, Proulx P, Boulos MI (2001) Modeling of a dc transferred arc in presence of an external magnetic field. In: 15th ISPC, Orleans, vol 3, pp 1009–1014

Download references

Acknowledgments

This research is supported in part by DTRA grant and the second author was supported by the National Science Foundation under a Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Miki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, K., Schulz, J. & Menon, S. Large Eddy Simulation of a Free-Burning Arc Discharge in Argon with a Turbulent Cross Flow and External Field. Plasma Chem Plasma Process 33, 959–978 (2013). https://doi.org/10.1007/s11090-013-9468-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9468-2

Keywords

Navigation