Skip to main content
Log in

Decomposition of Chlorobenzene by Thermal Plasma Processing

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Decomposition of chlorobenzene as a model molecule of aromatic chlorinated compounds was studied in radiofrequency thermal plasma both in neutral and oxidative conditions. Optical emission spectroscopy was applied for the evaluation of the plasma excitation and molecular rotational-vibrational temperature. Atomic (C, H, O) and molecular (CH, OH, C2) radicals were identified, while the morphology of the formed soot was characterized by electron microscopy. Organic compounds adsorbed on the surface of the soot after plasma processing were comprised of various polycyclic aromatic hydrocarbons (PAH) and chlorinated PAH molecules. Their amount was greatly affected by experimental conditions, especially the oxygen content and plate power. The higher input power reduced the ring number of the PAH molecules. Addition of oxygen significantly reduced the amount of both PAHs chlorinated PAH molecules but enhanced the formation of polychlorinated benzene compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Feltens R, Mögel I, Röder-Stolinski C, Simon JC, Herberth G, Lehmann I (2010) Chlorobenzene induces oxidative stress in human lung epithelial cell in vitro. Toxicol Appl Pharm 242:100–108

    Article  CAS  Google Scholar 

  2. Kusters E, Lauwerys R (1990) Biological monitoring of exposure to monochlorobenzene. Int Arch Occup Environ Health 62:329–331

    Article  CAS  Google Scholar 

  3. Howard PH (1989) Handbook of environmental fate and exposure data for organic chemicals. Vol 1: large production and priority pollutants. Lewis Publishers, Chelsea

    Google Scholar 

  4. Meharg AA, Wright J, Osbornl D (2000) Chlorobenzenes in rivers draining industrial catchments. 251–252:243–253

    Google Scholar 

  5. Roex EWM, Giovannangelo M, van Gestel CAM (2001) Reproductive impairment in the zebrafish, Danio rerio, upon chronic exposure to 1,2,3-trichlorobenzene. Ecotoxicol Environ Saf 48:196–201

    Article  CAS  Google Scholar 

  6. Qian Y, Yin D, Li Y, Wang J, Zhang M, Hu S (2004) Effects of four chlorobenzenes on serum sex steroids and hepatic microsome enzyme activities in crucian carp, Carassius auratus. Chemosphere 57:127–133

    Article  CAS  Google Scholar 

  7. Fadli A, Briois C, Baillet C, Sawerysyn JP (1999) Experimental study on the thermal oxidation of chlorobenzene at 575–825 °C. Chemosphere 38:2835–2848

    Article  CAS  Google Scholar 

  8. Mohai I, Gál L, Szépvölgyi J, Gubicza J, Farkas Z (2007) Synthesis of nanosized zinc ferrites from liquid precursors in RF thermal plasma reactor. J Eur Ceram Soc 27:941–945

    Article  CAS  Google Scholar 

  9. Nemes L, Irle S (2009) Spectroscopy, dynamics and molecular theory of carbon plasmas and vapors. World Scientific Publishing, Abingdon

    Google Scholar 

  10. Al-Shboul KF, Harilal SS, Hassanein A, Polek M (2011) Dynamics of C2 formation in laser-produced carbon plasma in helium environment. J App Phys 109:053302

    Article  Google Scholar 

  11. Nemes L, Keszler AM, Hornkohl JO, Parigger CG (2005) Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown. Appl Opt 44:3661–3667

    Article  Google Scholar 

  12. Cota-Sanchez G, Soucy G, Huczko A, Lange H (2005) Induction plasma synthesis of fullerenes and nanotubes using carbon black-nickel particles. Carbon 43:3153–3166

    Article  CAS  Google Scholar 

  13. Föglein KA, Szépvölgyi J, Szabó PT, Mészáros E, Pekker-Jakab E, Babievskaya IZ, Mohai I, Károly Z (2005) Comparative study on decomposition of CFCl3 in thermal and cold plasma. Plasma Chem Plasma Proc 25:275–288

    Article  Google Scholar 

  14. Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608

    Article  CAS  Google Scholar 

  15. Parigger CG, Plemmons DH, Oks E (2003) Balmer series Hβ measurements in a laser-induced hydrogen plasma. Appl Opt 42:5992–6000

    Article  CAS  Google Scholar 

  16. Nemes L, Keszler AM, Parigger CG, Hornkohl JO, Michelsen HA, Stakhursky V (2007) Spontaneous emission from the C3 radical in carbon plasma. Appl Opt 46:4032–4040

    Article  CAS  Google Scholar 

  17. Smyth KC, Shaddix CR, Everest DA (1997) Aspects of soot dynamics as revealed by measurements of broadband fluorescence and flame luminosity in flickering diffusion flames. Combust Flame 111:185–194

    Article  CAS  Google Scholar 

  18. Goulay F, Schrader PE, Nemes L, Dansson MA, Michelsen HA (2009) Photochemical interferences for laser-induced incandescence of flame-generated soot. Proc Combust Inst 32:963–970

    Article  CAS  Google Scholar 

  19. Jamroz P, Zyrnicki W (2010) Optical emission spectroscopy study for nitrogen-acetylene-argon and nitrogen-acetylene-helium 100 kHz and DC discharges. Vacuum 84:940–946

    Article  CAS  Google Scholar 

  20. Yugeswaran S, Selvarajan V (2006) Electron number density measurements on a DC argon plasma jet by stark broadening of Ar I spectral line. Vacuum 81:347–352

    Article  CAS  Google Scholar 

  21. NIST atomic spectra database. http://physics.nist.gov/PhysRefData/ASD/index.html

  22. Bastiaans GJ, Mangold RA (1985) The calculation of electron density and temperature in Ar spectroscopic plasma from continuum and line spectra. Spectrochim Acta Part B At Spectrosc 40:885–892

    Article  Google Scholar 

  23. Hornkohl JO, Parigger CG, Lewis JWL (1991) Temperature measurements from CN spectra in a laser-induced plasma. J Quant Spectrosc Radiat Transf 46:405–411

    Article  CAS  Google Scholar 

  24. Parigger CG, Plemmons DH, Hornkohl JO, Lewis JWL (1994) Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system. J Quant Spectrosc Radiat Transf 52:707–711

    Article  CAS  Google Scholar 

  25. Parigger CG, Hornkohl JO, Keszler AM, Nemes L (2003) Measurements and analysis of atomic and diatomic carbon spectra from laser ablation of graphite. Appl Opt 42:6192–6198

    Article  CAS  Google Scholar 

  26. Okada A, Kijima K (2002) Analysis of optical emission spectra from ICP of Ar-SiH4-CH4 system. Vacuum 65:319–326

    Article  CAS  Google Scholar 

  27. Shih SI, Lin TC, Shih M (2005) Decomposition of benzene in the RF plasma environment: Part II. Formation of polycyclic aromatic hydrocarbons. J Hazard Mater 117:149–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge the financial support of the National Office for Research and Technology (REG-KM-09-1-2009-0005 and TÁMOP-4.2.2/B-10/1-2010-0025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fazekas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazekas, P., Bódis, E., Keszler, A.M. et al. Decomposition of Chlorobenzene by Thermal Plasma Processing. Plasma Chem Plasma Process 33, 765–778 (2013). https://doi.org/10.1007/s11090-013-9459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9459-3

Keywords

Navigation