Skip to main content
Log in

Superhigh-Rate Epitaxial Silicon Thick Film Deposition from Trichlorosilane by Mesoplasma Chemical Vapor Deposition

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Homoepitaxial Si thick films have been deposited by mesoplasma chemical vapor deposition (CVD) with SiHCl3 (TCS)–H2–Ar gas mixtures. The addition of a small amount of H2 has been found to not only modify the film structure from polycrystalline to epitaxial but also effectively improve the deposition efficiency and film purity by removing Cl in the form of HCl. However, an excess introduction of H2 decreases the deposition efficiency owing to the shrinkage of the plasma flame. On the other hand, an increase in TCS flow rate increases the epitaxial deposition rate despite exhibiting a saturating tendency, while the material yield tends to decrease gradually due possibly to an increase in the Cl atoms. Also, we observed a critical limit in the TCS flow rate for epitaxial growth, beyond which a polycrystalline film resulted. However, when RF input power was increased, not only the upper limit of TCS flow rate for epitaxy was extended but also the deposition yield was improved so that the deposition rate reached ~700 nm/s with the material yield of >50 % at 30 kW input power with an H2/TCS ratio of 1.5. Additionally, high input power is found to be beneficial to decrease Cl atom incorporation into the film and improve the Hall mobility of the films. An epitaxial film with a Cl atom concentration of less than 3 × 1016 cm−3 and a Hall mobility as high as 250 cm2/(V·s) was obtained at 30 kW input power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Reber S, Hurrle A, Eyer A, Willeke G (2004) Sol Energy 77:865–875

    Article  CAS  Google Scholar 

  2. Beaucarne G, Duerinckx F, Kuzma I, Van Nieuwenhuysen K, Kim HJ, Poortmans J (2006) Thin Solid Films 511–512:533–542

    Article  Google Scholar 

  3. Kommu S, Wilson GM, Khomami B (2000) J Electrochem Soc 147(4):1538–1550

    Article  CAS  Google Scholar 

  4. Van Nieuwenhuysen K, Duerinckx F, Kuzma I, Van Gestel D, Beaucarne G, Poortmans J (2006) J Cryst Growth 287(2):438–441

    Article  Google Scholar 

  5. Gordon I, Vallon S, Mayolet A, Beaucarne G, Poortmans J (2010) Sol Energy Mater Sol Cells 94(2):381–385

    Article  CAS  Google Scholar 

  6. Habuka H, Aoyama Y, Akiyama S, Otsuka T, Qu WF, Shimada M, Okuyama K (1999) J Cryst Growth 207(1–2):77–86

    Article  CAS  Google Scholar 

  7. Habuka H, Katayama M, Shimada M, Okuyama K (1997) J Cryst Growth 182(3–4):352–362

    Article  CAS  Google Scholar 

  8. Habuka H, Suzuki J, Takai Y, Hirata H, Mitani S (2011) J Cryst Growth 327(1):1–5

    Article  CAS  Google Scholar 

  9. Hattangady SV, Posthill JB, Fountain GG, Rudder RA, Mantini MJ, Markunas RJ (1991) Appl Phys Lett 59(3):339–341

    Article  CAS  Google Scholar 

  10. Fukuda K, Murota J, Ono S, Matsuura T, Uetake H, Ohmi T (1991) Appl Phys Lett 59(22):2853–2855

    Article  CAS  Google Scholar 

  11. Yasutake K, Ohmi H, Kirihata Y, Kakiuchi H (2008) Thin Solid Films 517(1):242–244

    Article  CAS  Google Scholar 

  12. Mori Y, Yoshii K, Yasutake K, Kakiuchi H, Ohmi H, Wada K (2003) Thin Solid Films 444(1–2):138–145

    Article  CAS  Google Scholar 

  13. Yasutake K, Kakiuchi H, Ohmi H, Inagaki K, Oshikane Y, Nakano M (2011) J Phys Condens Matter 23:394205

    Article  CAS  Google Scholar 

  14. Kambara M, Yagi H, Sawayanagi M, Yoshida T (2006) J Appl Phys 99(7):074901

    Article  Google Scholar 

  15. Sawayanagi M, Diaz JM, Kambara M, Yoshida T (2007) Surf Coat Technol 201(9–11):5592–5595

    Article  CAS  Google Scholar 

  16. Kambara M, Hamai Y, Yagi H, Yoshida T (2007) Surf Coat Technol 201(9–11):5529–5532

    Article  CAS  Google Scholar 

  17. Diaz JMA, Kambara M, Yoshida T (2008) J Appl Phys 104:013536

    Article  Google Scholar 

  18. Diaz JMA, Kambara M, Yoshida T (2009) IEEE Trans Plasma Sci 37(9):1723–1729

    Article  CAS  Google Scholar 

  19. Yoshida T (1994) Pure Appl Chem 66(6):1223–1230

    Article  CAS  Google Scholar 

  20. Chen LW, Shibuta Y, Kambara M, Yoshida T (2012) J Appl Phys 111:123301

    Article  Google Scholar 

  21. Diaz JMA, Sawayanagi M, Kambara M, Yoshida T (2007) Jpn J Appl Phys 46:5315–5317

    Article  CAS  Google Scholar 

  22. Fukuda J, Kambara M, Yoshida T (2011) Thin Solid Films 519(20):6759–6762

    Article  CAS  Google Scholar 

  23. Diaz JMA, Harima K, Kambara M, Yoshida T (2009) Thin Solid Films 518(3):976–980

    Article  CAS  Google Scholar 

  24. Tomooka T, Shoji Y, Matsui T (1999) J Mass Spectrom Soc Jpn 47:49–53

    Article  CAS  Google Scholar 

  25. Bruno G, Capezzuto P, Cicala G, Cramarossa F (1986) Plasma Chem Plasma Process 6:109–125

    Article  CAS  Google Scholar 

  26. Pearse RWB, Gaydon AG (1965) The identification of molecular spectra, 3rd edn. Chapman and Hall, London

    Google Scholar 

  27. Tang YS, Wilkinson CDW (1991) Appl Phys Lett 58(25):2898–2900

    Article  CAS  Google Scholar 

  28. Girshick SL, Yu W (1990) Plasma Chem Plasma Process 10(4):515–529

    Article  CAS  Google Scholar 

  29. Al-Mamun SA, Tanaka Y, Uesugi Y (2009) J Plasma Fusion Res 8:1243–1247

    Google Scholar 

  30. Tanaka Y (2009) Thin Solid Films 518(3):936–942

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grant-in-Aid for Scientific Research (S) 21226017 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). One of the authors (Sudong Wu) was supported by the Global COE Program “Global Center of Excellence for Mechanical Systems Innovation” from MEXT, and also by the Marubun Research Promotion Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Kambara, M. & Yoshida, T. Superhigh-Rate Epitaxial Silicon Thick Film Deposition from Trichlorosilane by Mesoplasma Chemical Vapor Deposition. Plasma Chem Plasma Process 33, 433–451 (2013). https://doi.org/10.1007/s11090-013-9439-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9439-7

Keywords

Navigation