Skip to main content
Log in

3D Unsteady State MHD Modeling of a 3-Phase AC Hot Graphite Electrodes Plasma Torch

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We present, in this paper, the magnetohydrodynamic (MHD) modeling of a three-phase plasma torch. The MHD equations are solved using CFD software Code Saturne ®, a computational fluid dynamics software which is based on colocated finite volume. The model developed is 3-D, time dependent, and assumes Local Thermodynamic Equilibrium (LTE). Regarding numerical issues, the modeling of the three-phase AC discharge is particularly tricky since the arcs ignition, by the rotating electrical potential, is relative to the electron density of the electrode gap middle. However, despite these challenging difficulties, the numerical model has been successfully implemented by a LTE assumption. After a detailed description of the model, the results are presented, analyzed, and discussed. The influence of current and nitrogen flow rate over the arc characteristics are studied in terms of temperature, arc behavior (position and motion), velocity and electrical potential. The model gave significant information on parameters that could hardly be obtained experimentally. This study has shown the strong influence of the electrode jets on the overall arc and flow behavior. This work is likely to open the way toward a better understanding of three-phase discharges, which technologies are currently encountering an important development in many application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Ravary B (1998) Modélisation thermique et hydrodynamique d’un réacteur plasma triphasé. Contribution à la mise au point d’un procédé industriel pour la fabrication de noir de carbone; Thèse Doctorale de l’école des Mines de Paris décembre 1998. In French

  2. Fabry F, Flamant G, Fulcheri L (2001) Carbon black processing by thermal plasma. Analysis of the particle formation mechanism. Chem Eng Sci 56:2123–2132

    Article  CAS  Google Scholar 

  3. Gonzalez-Aguilar J, Dème I, Fulcheri L, Flamant G, Gruenberger TM, Ravary B (2004) Comparison of simple particle-radiation coupling models applied on a plasma black process. Plasma Chem Plasma Process 24(4):603–623

    Article  CAS  Google Scholar 

  4. Zhou Q, Li H, Xu X, Liu F, Guo S, Chang X, Xu P (2009) Comparative study of turbulence models on highly constricted plasma cutting arc. J Phys D Appl Phys 42:015210

    Article  Google Scholar 

  5. Nguyen P, Tanaka Y, Uesugi Y (2012) Numerical investigation of the swirl gas angle and arc current dependence on evaporation of hafnium cathode in a plasma cutting arc. IEEE Trans Plasma Sci 40:497–504

    Article  Google Scholar 

  6. Murphy AB (2010) The effects of metal vapour in arc welding. J Phys D Appl Phys 43:434001

    Article  Google Scholar 

  7. Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:053001

    Article  Google Scholar 

  8. Bakken J, Gu L, Larsen H, Sevastyanenko V (1997) Numerical modeling of electric arcs. J Eng Phys Thermophys 70(4):530–543

    Article  Google Scholar 

  9. Li HP, Pfender E (2007) Three dimensional modeling of the plasma spray process. J Therm Spray Technol 16:245–260

    Article  CAS  Google Scholar 

  10. Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19(1):56–80

    Article  CAS  Google Scholar 

  11. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:R86–R108

    Article  CAS  Google Scholar 

  12. Gonzalez-Aguilar J, Moreno M, Fulcheri L (2007) Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure. J Phys D Appl Phys 40:2361–2374

    Article  CAS  Google Scholar 

  13. Gonzalez J–J, Freton P, Reichert F, Randrianarivao D (2012) Turbulence and magnetic field calculations in high-voltage circuit breakers. IEEE Trans Plasma Sci 40:936–945

    Article  Google Scholar 

  14. Chemartin L, Lalande P, Montreuil E, Delalondre C, Cheron BG, Lago F (2009) Three dimensional simulation of a DC free burning arc. Appl Light Phys Atmos Res 91:371–380

    Article  Google Scholar 

  15. Nordborg H, Iordanidis AA (2008) Self-consistent radiation based modelling of electric arcs: I. Efficient radiation approximations. J Phys D Appl Phys 41:135205

    Article  Google Scholar 

  16. Gonzalez JJ, Lago F, Freton P, Masquère M, Franceries X (2005) Numerical modelling of an electric arc and its interaction with the anode: part II. The three-dimensional model-influence of external forces on the arc column. J Phys D Appl Phys 38:306

    Article  CAS  Google Scholar 

  17. Lebouvier A, Delalondre C, Fresnet F, Boch V, Rohani V, Cauneau F, Fulcheri L (2011) Three-dimensional unsteady MHD modeling of a low-current high-voltage nontransferred DC plasma torch operating with air. IEEE Trans Plasma Sci 39:1889–1899

    Article  Google Scholar 

  18. Lebouvier A, Delalondre C, Fresnet F, Cauneau F, Fulcheri L (2012) 3D MHD modelling of low current-high voltage DC plasma torch under restrike mode. J Phys D Appl Phys 45:025204

    Article  Google Scholar 

  19. Selvan B, Ramachandran K, Sreekumar KP, Thiyagarajan TK, Ananthapadmanabhan PV (2009) Three-dimensional numerical modeling of an Ar-N2 plasma arc inside a non-transferred torch. Plasma Sci Technol 11:679

    Article  CAS  Google Scholar 

  20. Tang KM, Yan JD, Chapman C, Fang MTC (2010) Three-dimensional modelling of a DC arc plasma in a twin-torch system. J Phys D Appl Phys 43:345201

    Article  Google Scholar 

  21. Chau SW, Hsu KL, Lin DL, Chen JS, Tzeng CC (2007) Modeling and experimental validation of a 1.2 MW DC transferred well-type plasma torch. Comput Phys Commun 177:114–117

    Article  CAS  Google Scholar 

  22. Colombo V, Ghedini E, Boselli M, Sanibondi P, Concetti A (2011) 3D static and time-dependent modelling of a dc transferred arc twin torch system. J Phys D Appl Phys 44:194005

    Article  Google Scholar 

  23. Trelles JP, Pfender E, Heberlein JVR (2007) Modelling of the arc reattachment process in plasma torches. J Phys D Appl Phys 40:5635

    Article  CAS  Google Scholar 

  24. Rutberg PhG, Lukyanov SA, Kiselev AA, Kuschev SA, Nakonechny GhV, Nikonov AV, Popov SD, Serba EO, Spodobin VA, Surov AV (2011) Investigation of parameters of the three phase high-voltage alternating current plasma generator with power up to 100 kW working on steam. J Phys: Conf Ser 275:012006

    Article  Google Scholar 

  25. Weidong X, Fulcheri L, Gonzalez-Aguilar J, Hui L, Gruenberger T (2006) Characterization of a 3-phase AC free burning arc plasma. Plasma Sci Technol 8:156–163

    Article  Google Scholar 

  26. Ravary B, Fulcheri L, Bakken JA, Flamant G, Fabry F (1999) Influence of the electromagnetic forces on momentum and heat transfer in a 3-phase ac plasma reactor. Plasma Chem Plasma Process 19(1):69–89

    Article  CAS  Google Scholar 

  27. Barthelemy B (2003) combustion-vitrification de déchets radioactifs par plasma d’arc : Modélisation de la thermique et de la dynamique; Thèse de l’Université de Limoges, soutenue le 12 juin 2003. In French

  28. Schnick M, Wilhelm G, Lohse M, Füssel U, Murphy AB (2011) Three-dimensional modelling of arc behaviour and gas shield quality in tandem gas-metal arc welding using anti-phase pulse synchronization. J Phys D Appl Phys 44:185205

    Article  Google Scholar 

  29. Larsen H (1996) AC Electric Arc Models For a Laboratory Set-up and a Silicon Metal Furnace. NTH, University of Trondheim, Department of metallurgy, Norway

    Google Scholar 

  30. Saearsdottir G, Bakken J, Sevastyanenko V, Gu L (2001) High-power AC arcs in metallurgical furnaces. High Temp Mater Process 5:21–43

    Google Scholar 

  31. Salome, http://www.salome-platform.org/

  32. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas fundamentals and applications. Springer, Berlin

    Google Scholar 

  33. Naghizadeh-Kashani Y, Cressault Y, Gleizes A (2002) Net emission coefficient of air thermal plasmas. J Phys D Appl Phys 35:2925–2934

    Article  CAS  Google Scholar 

  34. Archambeau F, Mechitoua N, Sakiz M (2004) Code Saturne: a finite volume code for the computation of turbulent incompressible flows industrial applications. Int J Finite Vol 1(1):1–62

    Google Scholar 

  35. Freton P, Gonzalez JJ, Gleizes A (2000) Comparison between a two- and a three-dimensional arc plasma configuration. J Phys D Appl Phys 33:2442

    Article  Google Scholar 

  36. Park J, Heberlein J, Pfender E, Candler G, Chang C (2008) Two-dimensional numerical modeling of direct-current electric arcs in nonequilibrium. Plasma Chem Plasma Process 28(2):213–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to ‘Region Provence et Alpes Côte d’Azur’ for their financial support and Clarisse Delalondre and Alexandre Lebouvier for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Fulcheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehmet, C., Rohani, V., Cauneau, F. et al. 3D Unsteady State MHD Modeling of a 3-Phase AC Hot Graphite Electrodes Plasma Torch. Plasma Chem Plasma Process 33, 491–515 (2013). https://doi.org/10.1007/s11090-013-9438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-013-9438-8

Keywords

Navigation