Skip to main content
Log in

One-Dimensional Modeling on the Asymmetric Features of a Radio-Frequency Atmospheric Helium Glow Discharge Produced Using a Co-Axial-Type Plasma Generator

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, a one-dimensional transient fluid model is used to investigate the asymmetric characteristics of the radio-frequency atmospheric-pressure helium glow discharges produced using a co-axial-type plasma generator. Based on the analysis of the particle and energy balance processes in the discharge region, the modeling results show that the asymmetric features of the time-averaged plasma parameters, e.g., the species number densities, electron energy and the electric field, become significant resulting from the increase in the discrepancy between the surface areas of the inner and outer electrodes. And the influence of the inner electrode radius on the asymmetric features of the discharges becomes more significant compared with the electrode gap spacing for the cases with smaller inner electrode radius. The calculated asymmetric features of the discharges are also validated by the experimental analysis on the discharge images using the visible image processing technique qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang L-Y, Huang Z-L, Li G, Zhao H-X, Xing X-H, Sun W-T, Li H-P, Gou Z-X, Bao C-Y (2010) J Appl Microbiol 108:851–858

    Article  Google Scholar 

  2. Herrmann HW, Henins I, Park J, Selwyn GS (1999) Phys Plasmas 6:2284–2289

    Article  ADS  Google Scholar 

  3. Selwyn GS, Herrmann HW, Park J, Henins I (2001) Contrib Plasma Phys 6:610–619

    Article  ADS  Google Scholar 

  4. Yuan X-H, Raja LL (2003) IEEE Trans Plasma Sci 31:495–503

    Article  ADS  Google Scholar 

  5. Shi J–J, Kong MG (2005) IEEE Trans Plasma Sci 33:624–630

    Article  ADS  Google Scholar 

  6. Shi J–J, Kong MG (2005) J Appl Phys 97:023306

    Article  ADS  Google Scholar 

  7. Shang W-L, Wang D-Z, Zhang Y-T (2008) Phys Plasmas 15:093503

    Article  ADS  Google Scholar 

  8. Gulec A, Oksuz L, Hershkowitz N (2011) Phys Lett A 375:1733–1736

    Article  ADS  Google Scholar 

  9. Sakiyama Y, Graves DB (2007) J Appl Phys 101:073306

    Article  ADS  Google Scholar 

  10. Hagelaar GJM, Pitchford LC (2005) Plasma Sources Sci Technol 14:722–733

    Article  ADS  Google Scholar 

  11. Morgan W, Boeuf J, Pitchford L, BOLSIG Boltzmann Solver (freeware) (1996) Kinema Software, USA-Toulouse, France. http://www.siglokinema.com/bolsig.htm

  12. Deloche R, Monchicourt P, Cheret M, Lambert F (1976) Phys Rev A 13:1140–1176

    Article  ADS  Google Scholar 

  13. Phelps AV (1955) Phys Rev 99:1307–1313

    Article  ADS  Google Scholar 

  14. Golubovskii YB, Maiorov VA, Behnke J, Behnke JF (2003) J Phys D Appl Phys 36:39–49

    Article  ADS  Google Scholar 

  15. Brok WJM, Bowden MD, van Dijk J, van der Mullen JJAM, Kroesen GMW (2005) J Appl Phys 98:013302

    Article  ADS  Google Scholar 

  16. Raizer YP (1991) Gas discharge physics. Springer, Berlin

    Book  Google Scholar 

  17. Hagstrum HD (1956) Phys Rev 104:317–318

    Article  ADS  Google Scholar 

  18. Nishiyama H, Tsuri K, Shimizu H, Katagiri K, Takana H, Nakano Y (2009) Int J Heat Mass Trans 52:1778–1785

    Article  MATH  Google Scholar 

  19. Ellis HW, Pai RY, McDaniel EW, Mason EA, Viehland LA (1976) Atomic Data Nucl Data Tables 17:177–210

    Article  ADS  Google Scholar 

  20. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, Washington

    MATH  Google Scholar 

  21. Zhang Y-J (2006) Advances in image and video segmentation. IRM Press, Hershey

    Book  Google Scholar 

  22. Sobota A, van Dijk J, Haverlag M (2011) J Phys D Appl Phys 44:224003

    Article  ADS  Google Scholar 

  23. Hunt RWG (1991) Measuring colour, 2nd edn. Ellis Horwood, New York

    Google Scholar 

  24. Wang Z, Wu G-Q, Ge N, Li H-P, Bao C-Y (2010) IEEE Trans Plasma Sci 38:2906–2913

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China (No. 10972119, 61104204), the JST CREST project of Japan and the postdoctoral granted financial support from China Postdoctoral Science Foundation (20110490418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZB., Le, PS., Ge, N. et al. One-Dimensional Modeling on the Asymmetric Features of a Radio-Frequency Atmospheric Helium Glow Discharge Produced Using a Co-Axial-Type Plasma Generator. Plasma Chem Plasma Process 32, 859–874 (2012). https://doi.org/10.1007/s11090-012-9367-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9367-y

Keywords

Navigation