Skip to main content
Log in

Resonant Excitation of Boundary Layer Instability of DC Arc Plasma Jet by Current Modulation

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Instabilities of thermal plasma jets were studied on the basis of analysis of plasma radiation fluctuations recorded by an array of high frequency photodiodes. Characteristic frequencies of jet oscillations were found and spatial distribution of amplitude of plasma fluctuations was determined. The influence of arc current ripple on plasma instabilities was investigated for two types of power supply—classical thyristor controlled unit with the frequency of the current ripple 300 Hz and the rectifier with the high frequency converter and frequency of the current modulation 30 kHz. Generation of boundary layer instability with the current modulation frequency and its harmonics was proved using fast Fourier transform, contour plots and phase portraits. It was found that the character of fluctuations of plasma jet was substantially influenced by current ripple with the frequency or its harmonics close to the frequency of oscillations generated by boundary layer instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wutzke SA, Pfender E, Eckert ERG (1967) AIAA J 6:1474

    Google Scholar 

  2. Trelles JP, Pfender E, Heberlein JVR (2007) J Phys D Appl Phys 40:5635

    Article  ADS  Google Scholar 

  3. Coudert JF, Planche MP, Fauchais P (1996) Plasma Chem Plasma Proc 16:211s

    Article  Google Scholar 

  4. Coudert JF, Fauchais P (1997) High Temp Mater Proc 1:149

    Google Scholar 

  5. Duan Z, Heberlein JVR (2002) J Therm Spray Technol 11:44

    Article  ADS  Google Scholar 

  6. Hrabovsky M, Konrad M, Kopecky V et al (1997) High Temp Mat Process 1:167–168

    Google Scholar 

  7. Hrabovsky M, Konrad M, Kopecky V et al (1999) Ann NY Acad Sci 891:898

    Google Scholar 

  8. Tu X, Yan JH, Cheron BG, Cen KF (2008) Vacuum 82:468

    Article  Google Scholar 

  9. Hrabovsky M, Kopecky V, Chumak O, Kavka T, Maslani A, Sember V, Konrad M, Ctibor P (2009) High Temp Mat Process 13:229

    Article  Google Scholar 

  10. Coudert JF, Rat V, Rigot D (2007) Journ Phys D Appl Phys 40:7357

    Article  ADS  Google Scholar 

  11. Rat V, Coudert JF (2010) J Appl Phys 108:043304

    Article  ADS  Google Scholar 

  12. Outcalt D, Hallberg M, Yang G, Heberlein J, Pfender E, Strykowski P (2006) In: Proceedings of 2006 thermal spray conf, Seattle, USA

  13. Das AK (2000) Pramana Journ Phys 55-SI:873

    Article  ADS  Google Scholar 

  14. Nishiyama H, Sato T, Shiozaki Y (2004) Vacuum 73:691

    Article  Google Scholar 

  15. Nogues E, Vardelle M, Fauchais P, Granger P (2008) Surf Coat Technol 202:4387

    Article  Google Scholar 

  16. Ctibor P, Hrabovsky M (2010) Journ Eur Ceram Soc 30:3131

    Article  Google Scholar 

  17. Ghorui S, Sahasrabudhe SN, Tak AK, Joshi NK, Kulkami NV, Karmakar S, Banerjee I, Bhoraskar SV, Das AK (2006) IEEE Trans Plasma Sci 34:121

    Article  ADS  Google Scholar 

  18. Chumak O, Kavka T, Hrabovsky M (2008) IEEE Trans Plasma Sci 36:1062

    Article  ADS  Google Scholar 

  19. Trelles JP, Pfender E, Heberlein J (2006) Plasma Chem Plasma Process 26:557

    Article  Google Scholar 

  20. Brilhac JF, Pateyron B, Delluc G, Coudet JF, Fauchais P (1995) Plasma Chem Plasma Process 15:231

    Article  Google Scholar 

  21. Kopecky V, Hrabovsky M (2002) Czech J Phys 52:D567

    Article  Google Scholar 

  22. Kopecky V, Hrabovsky M, Motycka S (2006) Czech J Phys 56:B848

    Article  Google Scholar 

  23. Pfender E, Fincke J, Spores R (1991) Plasma Chem Plasma Proc 11:529

    Article  Google Scholar 

  24. Russ S, Strykowski PJ, Pfender E (1994) Exp Fluids 16:297

    Article  Google Scholar 

  25. Fincke JR, Chang CH, Swank WD, Haggard DC (1994) Int J Heat Mass Trans 37:1673

    Article  Google Scholar 

  26. Rayleigh JWS (1880) Proc Lond Math Soc XI: 57

  27. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Oxford University Press

  28. Monkewitz PA, Huerre P (1982) Phys Fluids 25:1137

    Article  ADS  Google Scholar 

  29. Thomas FO (1991) Appl Mech Rew 44:119

    Article  ADS  Google Scholar 

  30. Bejan A (1995) Convection heat transfer. John Wiley & Sons, Inc, New York

    Google Scholar 

  31. Hrabovský M, Kopecký V, Macura P (2001) Progress in plasma processing of materials, In: Fauchais P (ed) Begell House, New York—Wallingford

  32. Hrabovský M, Konrád M, Kopecký V, Macura P (2001) In: Proceedings of 15th international symposium on plasma chemistry, Orleans, vol. III: 861

  33. Hrabovsky M, Kopecky V, Sember V, Kavka T, Chumak O, Konrad M (2006) IEEE Trans Plasma Sc 34:1566

    Article  ADS  Google Scholar 

  34. Hrabovsky M (2002) Pure Appl Chem 74:429

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support of the Grant Agency of CR under the project number P202/11/2070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hrabovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopecky, V., Hrabovsky, M. Resonant Excitation of Boundary Layer Instability of DC Arc Plasma Jet by Current Modulation. Plasma Chem Plasma Process 31, 827–838 (2011). https://doi.org/10.1007/s11090-011-9317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9317-0

Keywords

Navigation