Skip to main content
Log in

Significance of Hydrogen–Deuterium Exchange at Polyolefin Surfaces on Exposure to Ammonia Low-Pressure Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Since more than 40 years ammonia plasma exposure of polyolefins is used for introduction of primary amino groups. The selectivity of this reaction and the yield in primary amino groups was found to be low. Here, a prominent side-reactions of this process was investigated, the hydrogenation by NH3 plasma. For identification of hydrogenation ammonia (NH3) and deuterated ammonia (ND3) were exposed to polyethylene (h-PE) and fully deuterated polyethylene (d-PE) as well as hexatriacontane (h-HTC) and fully deuterated hexatriacontane (d-HTC) as low-molecular weight model for PE. H–D exchange was assumed and detected by Time-of-Flight Secondary Ion Mass Spectrometry (ToF–SIMS), X-ray Photoelectron Spectroscopy (XPS), Attenuated Total Reflectance (ATR-FTIR) and 1H and 2H Nuclear magnetic Resonance. Results show a significant H–D exchange within the sampling depth of ATR (2.5 μm). However, N- and NH2 introduction was limited to the topmost surface as shown by SIMS and XPS (a few nanometers).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hollahan JR, Stafford BB, Falb RD, Payne ST (1969) J Appl Polym Sci 13:807

    Article  Google Scholar 

  2. Gähde J, Wittrich H, Schlosser E, Friedrich J, Kaiser G (1972) DD-patent 106:052

  3. Lawton EL (1974) J Appl Polym Sci 18:557

    Article  Google Scholar 

  4. Allred RE, Merrill EW, Roylance DK (1985) Polym Sci Technol 27:333

    Google Scholar 

  5. Friedrich J, Gähde J, Frommelt H, Wittrich H (1976) Faserforsch Textiltechn/Z Polymerenforsch 27:604

    Google Scholar 

  6. Friedrich J, Loeschcke I, Gähde J, Frommelt H, Wittrich H (1974) DD-patent 115:708

  7. Friedrich J, Gähde J, Frommelt H, Wittrich H (1976) Faserforsch. Textiltechn/Z Polymerenforsch 27:599

  8. Friedrich J, Loeschcke I, Gähde J, Richter K (1981) Acta Polym 32:337

    Article  Google Scholar 

  9. Friedrich J (1981) Contr Plasma Phys 21:261

    Google Scholar 

  10. Klemberg-Sapieha JE, Küttel OM, Martinu L, Wertheimer MR (1991) J Vac Sci Technol A9:2975

    ADS  Google Scholar 

  11. Lub J, van Vroonhoven F, Bruninx E, Benninghoven A (1989) Polymer 30:40

    Article  Google Scholar 

  12. Friedrich J, Ivanova-Mumeva VG, Gähde J, Andreevskaya GD, Loeschcke I (1983) Acta Polym 34:171

    Article  Google Scholar 

  13. d′ Agostino R, Stendardo M, Favia P (1995) In: Heberlein JV, Ernie EW, Roberts JT (eds) 12th Symposium on plasma chemistry, vol I. University of Minneapolis, p 27

  14. Meyer-Plath A, Mix R, Friedrich J (2007) In: Mittal KL (ed) Adhesion aspects of thin films, vol III. VSP, Leiden, p 177

  15. Oehr C, Müller M (1999) Surf Coat Technol 116–119:802

  16. Wedenew WJ, Gurwitsch LW, Kondratjew WH, Medwedew WA, Frankewitsch EL (1971) Energien chemischer Bindungen, Deutscher Verlag für Grundstoffindustrie, Leipzig

  17. Boenig HV (1988) Fundamentals of plasma chemistry and technology. Technomic, Lancaster

  18. Ivanova-Mumeva VG, Andreevskaya GD, Friedrich J, Gähde J (1980) Acta Polym 31:752

    Article  Google Scholar 

  19. Geng S, Friedrich J, Gähde J, Guo L (1999) J Appl Polym Sci 71:1231

    Article  Google Scholar 

  20. Gerenser LJ (1987) J Adhes Sci Tech 1:303

    Article  Google Scholar 

  21. Oran U, Swaraj S, Lippitz A, Unger WES (2006) Plasma Process Polym 3:288

    Article  Google Scholar 

  22. Truica-Marasescu F, Girard-Lauriault P-L, Lippitz A, Unger WES, Wertheimer MR (2008) Thin Solid Films 516:7406

    Article  ADS  Google Scholar 

  23. Girard-Lauriault P-L, Desjardins P, Unger WES, Lippitz A, Wertheimer MR (2008) Plasma Process Polym 5:631

    Article  Google Scholar 

  24. Retzko I, Friedrich JF, Lippitz A, Unger WES (2001) J Electr Spectr Rel Phenom 121:111

    Article  Google Scholar 

  25. Tibbitt JM, Bell AT, Shen M (1976) J Macromol Sci Chem A10:513

    Google Scholar 

  26. Friedrich J, Loeschcke I, Gähde J, Richter K (1981) Acta Polym 32:337–343

    Article  Google Scholar 

  27. Wertheimer MR, Schreiber HP (1081) J Appl Polym Sci 13:2087

    Google Scholar 

  28. Chawla AS, Sipehia R (1984) J Biomed Mater Res 18:537

    Article  Google Scholar 

  29. Cho DL, Yasuda HK (1986) J Vac Sci Technol A4:2307

    ADS  Google Scholar 

  30. Munkholm C, Wait DR, Milanovich FP, Klainer SM (1986) Ana Chem 58:1427

    Google Scholar 

  31. Iriyama Y, Yasuda HK (1988) J Appl Polym Sci Appl Polym Symp 42:97

    Google Scholar 

  32. Nakayama Y, Takahagi T, Soeda F, Hatada K, Nagaoka S, Suzuki J, Ishitani A (1988) J Polym Sci Part A Polym Chem 26:559

    Article  ADS  Google Scholar 

  33. Inagaki N, Tasaka S, Kawai H (1989) J Adhes Sci Technol 3:637

    Article  Google Scholar 

  34. Chapell PJC, Brown JR, George GA, Willis HA (1991) Surf Interface Anal 17:143

    Article  Google Scholar 

  35. Gengenbach TR, Xie X, Chatelier RC, Griesser HJ (1994) J Adhes Sci Technol 8:305

    Article  Google Scholar 

  36. Griesser HJ, Chatelier RC, Gengenbach TR, Johnson G, Steele JC (1994) J Biomater Sci Polym Ed 5:531

    Article  Google Scholar 

  37. Badey JP, Espuche E, Sage D, Chabert B, Jugnet Y, Batier C, Duc TM (1996) Polymer 37:1377

    Article  Google Scholar 

  38. Schröder K, Meyer-Plath A, Keller D, Besch W, Babucke G, Ohl A (2001) Contr Plasma Phys 41:562

    Article  ADS  Google Scholar 

  39. Yasuda HK, Marsh HC, Brandt S, Reilley CN (1977) J Polym Sci Polym Ed 15:991

    Article  Google Scholar 

  40. Foerch R, Hunter DH (1992) J Polym Sci Part A Polym Chem 30:279

    Article  ADS  Google Scholar 

  41. Foerch R, Beamson G, Briggs D (199) Surf Interf Anal 17:842

  42. Liston EM, Martinu L, Wertheimer MR (1993) J Adhes Sci Technol 7:1091

    Article  Google Scholar 

  43. Friedrich J, Wittrich H, Gähde J (1978) Faserforsch Textiltechn/Z Polymerenforsch 29:481

    Google Scholar 

  44. Friedrich J, Reiners H-D (1980) Berlin, unpublished results

  45. Friedrich J, Bertrand P (1989) Louvain-la-Neuve, unpublished results

  46. Min H, Wettmarshausen S, Friedrich J, Unger WES (2011) J Anal At Spectrom. doi:10.1039/C1JA10043B

  47. Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) J Chem Phys 103:6951

    Article  ADS  Google Scholar 

  48. Hartmann SR, Hahn EL (1962) Phys Rev 128:2042

    Article  ADS  MATH  Google Scholar 

  49. Cook RL, Langford CH, Yamdagni R, Preston CM (1996) Anal Chem 68:3979

    Article  Google Scholar 

  50. Bruker Almanac (2011) Analytical tables and product overview. ISBN:13978-3-929431-25-4

  51. Friedrich J, Unger WES, Lippitz A, Gross T, Rohrer P, Saur W, Erdmann J, Gorsler H-V (1996) In: Mittal KL (ed) Polymer surface modification: relevance to adhesion. VSP, Utrecht, pp 49–72

  52. Friedrich J, Unger WES, Lippitz A, Koprinarov I, Kühn G, Weidner S, Vogel L (1999) Surf Coat Technol 116–119:772

    Article  Google Scholar 

  53. Meyer-Plath A (2002) PhD thesis, Ernst-Moritz-Arndt University of Greifswald

  54. Oran U, Swaraj S, Friedrich JF, Unger WES (2005) Surf Coat Technol 200:463

    Article  Google Scholar 

  55. Swaraj S, Oran U, Lippitz A, Friedrich JF, Unger WES (2005) Surf Coat Technol 200:494

    Article  Google Scholar 

  56. del Fanti NA (2008) Infrared spectroscopy of polymers. Thermo Fisher Scientific, Madison

    Google Scholar 

  57. Team of authors (1973) Strukturaufklärung-Spektroskopie und Röntgenbeugung. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

  58. Colthup NB (1950) J Opt Soc Am 40:397

    Article  ADS  Google Scholar 

  59. Friedrich J, Mix R, Kühn G (2004) In: d′Agostino R, Favia P, Oehr C, Wertheimer MR (eds) Plasma processing and polymers. Wiley-VCH, Weinheim, pp 3–21

  60. Strobel JM, Strobel M, Lyons CS, Dunatov C, Perron S (1991) J Adhes Sci Technol 5:119

    Article  Google Scholar 

  61. Behnisch J, Zimmermann H, Friedrich J (1992) Int J Mater Sci 16:139

    Google Scholar 

  62. Vasilets VN, Kuznetsov AV, Sevastianov VI (2004) J Biomed Mater Res Part A 69:428

    Article  Google Scholar 

  63. Weidner S, Kühn G, Friedrich J, Unger WES, Lippitz A (1996) Rapid Comm Mass Spectrom 10:727

    Article  Google Scholar 

  64. Murillo R, Poncin-Epaillard F, Segui Y (2007) Eur Phys J Appl Phys 37:299

    Article  ADS  Google Scholar 

  65. Hudis M (1972) J Appl Polym Sci 16:2397

    Article  Google Scholar 

  66. Friedrich J, Geng S, Unger WES, Lippitz A (1998) Surf Coat Technol 98:1132

    Article  Google Scholar 

  67. Vickerman JC, Briggs D, Henderson A, The Static SIMS Library (1999) Manchester, Surface Spectra

  68. Wagner D, Dikmen B, Döbele HF (1998) Plasma Sour Sci Technol 7:462

    Article  ADS  Google Scholar 

  69. Fukumasa O, Tauchi Y, Yabuki Y, Mori S, Takeiri Y (2002) Ninth international symposium on the production and neutralization of negative ions and beams. AIP Conf Proc 639:28–34

    Article  ADS  Google Scholar 

  70. Lyang CY, Lytton MR, Boone CJ (1960) J Polym Sci 47:139

    Article  ADS  Google Scholar 

  71. Lyang CY (1964) IR spectra of polymers: deuteration and polarization. In: Bacon K (ed) Newer methods of polymer characterization. Interscience, New York, pp 33–102

    Google Scholar 

  72. Tasumi M, Shimonouchi T (1966) J Polym Sci A1:1011–1021

    Google Scholar 

  73. Jelinski J (1986) Deuterium NMR of solid polymers. In: Komoroski RA (ed) High resolution NMR spectroscopy of synthetic polymers in bulk. VCH Publishers, Deerfield Beach

    Google Scholar 

  74. Lyman T (1906) Astrophys J 23:181

    Article  ADS  Google Scholar 

  75. Holländer A, Klemberg-Sapieha JE, Wertheimer MR (1994) Macromolecules 27:2893

    Article  ADS  Google Scholar 

  76. Painter LR, Arakawa ET, Williams MW, Ashley JC (1980) Radiat Res 83:1

    Article  Google Scholar 

  77. Truica-Marasescu F-E, Wertheimer MR (2005) Macromol Chem Phys 206:744

    Article  Google Scholar 

  78. Nakayama M, Shibahara M, Maruyama K, Kamat K (1993) J Mater Sci Lett 12:1380

    Article  Google Scholar 

  79. Skurat V (2003) Nucl Instrum Methods Phys Res B 208:27

    Article  ADS  Google Scholar 

  80. Fanghänel E (2004) Organikum, 22nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  81. Hergenröther PM, Levine HH (1967) J Polym Sci A 1:1453

    Google Scholar 

  82. Noren CJ, Wang J, Perler FB (2000) Angew Chem Intern Ed 39:450

    Google Scholar 

  83. Holländer A, Wilken R, Behnisch J (1999) Surf Coat Technol 116–119:788

    Article  Google Scholar 

  84. Finke B, Schröder K, Ohl A (2008) Plasma Proc Polym 5:386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wettmarshausen, S., Min, H., Unger, W. et al. Significance of Hydrogen–Deuterium Exchange at Polyolefin Surfaces on Exposure to Ammonia Low-Pressure Plasma. Plasma Chem Plasma Process 31, 551–572 (2011). https://doi.org/10.1007/s11090-011-9304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-011-9304-5

Keywords

Navigation