Skip to main content
Log in

Formation and Excitation of CN Molecules in He–CO–N2–O2 Discharge Plasmas

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The emission by electronically excited CN molecules is a prominent feature in the spectrum of active nitrogen containing traces of carbonaceous species. A large amount of experimental work has been devoted to an investigation of CN emission. However, up to now the plasma chemistry of CN radicals and processes leading to the excitation of CN electronic states are still poorly understood. The results of experimental measurements and numerical simulations are compared in order to establish the role of various channels of CN creation in the ground and excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dickman RI, Sommerville WB, Whittet DCB et al (1983) Astrophys J Suppl Ser 53:55

    Article  ADS  Google Scholar 

  2. Federman SR, Danks AC, Lambert D (1984) Astrophys J 287:219

    Article  ADS  Google Scholar 

  3. Viala YP (1986) Astron Astrophys Suppl 64:391

    ADS  Google Scholar 

  4. Federman SR, Strom CJ, Lambert D et al (1994) Astrophys J 424:772

    Article  ADS  Google Scholar 

  5. Lust R (1981) Top Curr Chem 19:73

    Article  Google Scholar 

  6. Strobel DF (1983) Int Rev Phys Chem 3:145

    Article  Google Scholar 

  7. Combi MR (1980) Astrophys J 241:675

    Article  Google Scholar 

  8. Miller JA, Bowman CT (1989) Prog Energy Combust Sci 15:287

    Article  Google Scholar 

  9. Smith IWM (1991) J Chem Soc Faraday Trans 87:2271

    Article  Google Scholar 

  10. Haynes BS (1977) Combust Flame 28:113

    Article  Google Scholar 

  11. Boubert P, Vervisch P (2000) J Chem Phys 112:10482

    Article  ADS  Google Scholar 

  12. Tsang W, Bauer SH, Cowperthwaile M (1962) J Chem Phys 36:1768

    Article  ADS  Google Scholar 

  13. Patterson WL, Green EF (1962) J Chem Phys 36:1146

    Article  ADS  Google Scholar 

  14. Fairbairn AR (1969) J Chem Phys 51:972

    Article  ADS  Google Scholar 

  15. Park C, Howe JT, Jaffe RL et al (1994) J Thermophys Heat Transfer 8:9

    Article  ADS  Google Scholar 

  16. Lago V, Barbosa E, Passarinho F, Martin J-P (2007) Plasma Sources Sci Technol 16:139

    Article  ADS  Google Scholar 

  17. West GA, Berry MJ (1974) J Chem Phys 61:4700

    Article  ADS  Google Scholar 

  18. Kutasi K, Donko Z, Mohai M et al (2003) Vacuum 68:311

    Article  Google Scholar 

  19. Nemes L, Mohai M, Danko Z, Bertoli I (2000) Spectrachim Acta A 56:761

    Article  ADS  Google Scholar 

  20. Dinescu G, Aldera E, Musa G et al (1998) Thin Solid Films 325:123

    Article  ADS  Google Scholar 

  21. Dinescu G, de Graaf A, Aldea E et al (2001) Plasma Source Sci Technol 10:513

    Article  ADS  Google Scholar 

  22. de Graaf A, Aldea E, Dinescu G et al (2001) Plasma Source Sci Technol 10:524

    Article  ADS  Google Scholar 

  23. Trubacheev EA (1977) Tr Fiz Inst im. PN Lebedeva Ross Akad Nauk 102:1 (in Russian)

  24. Sobolev NN, Ochkin VN, Savinov SY, Trubacheev EA (1974) Sov J Quantum Electron 4:319

    Article  ADS  Google Scholar 

  25. Grigoryan GM, Dymshitz BM, Ionikh YZ (1989) Sov J Quantum Electron 19:889

    Article  ADS  Google Scholar 

  26. Grigorian GM, Ionikh YZ (2001) Proceedings of the 22nd meeting on the spectroscopy, Zvenigorod, Part 1, p 109

  27. Grigorian GM, Kochetov IV, Dyatko NA (2003) Plasma Phys Reports 29:709

    Article  ADS  Google Scholar 

  28. Grigorian GM, Kochetov IV (2004) Plasma Phys Reports 30:788

    Article  ADS  Google Scholar 

  29. Mitchell ACG, Zemansky MW (1971) Resonance radiation and excited atoms. Cambridge University Press, Cambridge, p 323

    Google Scholar 

  30. Golden DM, Del Greco EP (1963) J Chem Phys 39:3034

    Article  ADS  Google Scholar 

  31. Konev YB, Kochetov IV, Pevgov VG, Sharkov VF (1977) Preprint IAE-2821, Moscow (in Russian)

  32. Taieb G, Legay F (1970) Can J Phys 48:1956

    Article  ADS  Google Scholar 

  33. Provencher GM, McKenney DJ (1972) Can J Phys 50:2527

    Google Scholar 

  34. Setser DW, Thrush BA (1965) Proc Roy Soc A288:256

    ADS  Google Scholar 

  35. Boden JC, Thrush BA (1968) Proc Roy Soc A305:93

    ADS  Google Scholar 

  36. Provencher GM, McKenney DJ (1971) Chem Phys Lett 10:365

    Article  ADS  Google Scholar 

  37. Iwai F, Savadatti MJ, Broida HP (1967) J Chem Phys 47:3874

    Article  Google Scholar 

  38. Stair AT, Kennealy JP, Murphy RE (1967) J Chim Phys 64:52

    Google Scholar 

  39. Washida N, Becker KH, Groth W (1972) Chem Phys Lett 15:45

    Article  ADS  Google Scholar 

  40. Washida N, Kley D, Becker KH (1975) J Chem Phys 63:4230

    Article  ADS  Google Scholar 

  41. Joung RA, Morrow W (1974) J Chem Phys 60:1005

    Article  ADS  Google Scholar 

  42. Katayama DH, Miller FA, Bondybey VE (1979) J Chem Phys 71:1662

    Article  ADS  Google Scholar 

  43. Conley C, Halpern JB, Wood J et al (1980) Chem Phys Lett 73:224

    Article  ADS  Google Scholar 

  44. Taherion MR, Slanger TG (1985) J Chem Phys 82:2511

    Article  ADS  Google Scholar 

  45. Whyte AR, Phillips LF (1983) Chem Phys Lett 98:590

    Article  ADS  Google Scholar 

  46. Duran JL, Tully FP (1989) Chem Phys Lett 154:568

    Article  ADS  Google Scholar 

  47. Balla RJ, Castelon KH (1991) J Phys Chem 95:2344

    Article  Google Scholar 

  48. Sims IR, Queffelec J-L, Defrance A et al (1994) J Chem Phys 100:4229

    Article  ADS  Google Scholar 

  49. Tsang W (1992) J Phys Chem Ref Data 21:741

    Article  Google Scholar 

  50. Danylewych LL, Nicholls RW (1978) Proc Roy Soc A360:557

    ADS  Google Scholar 

  51. Young RA (1971) J Chem Phys 55:2900

    Article  Google Scholar 

  52. Keren H, Avivi P, Dothan F (1975) IEEE J Quant Electr 11:590

    Article  ADS  Google Scholar 

  53. Bhaumic ML, Lacina WB, Mann M (1972) IEEE J Quant Electr 8:150

    Article  ADS  Google Scholar 

  54. Grigorian GM, Kochetov IV (2008) Quantum Electron 38:940

    Article  ADS  Google Scholar 

  55. Grigorian GM, Cenian A (2009) Chem Phys Lett 469:247

    Article  ADS  Google Scholar 

  56. Katayama DH, Miller TA, Bondybey VE (1979) J Chem Phys 71:1662

    Article  ADS  Google Scholar 

  57. Mnatsakanyan AK, Podlubnyi LI (1972) Sov Phys-Tech Phys 16:1680

    ADS  Google Scholar 

  58. Kosoruchkina AD, Trekhov ES (1976) Sov Phys-Tech Phys 20:679

    Google Scholar 

  59. Massabieaux B, Plain A, Ricard A, Capitelli M, Gorse C (1983) J Phys B: At Mol Phys 16:1863

    Article  ADS  Google Scholar 

  60. Ono S, Teii S (1983) J Phys D Appl Phys 16:163

    Article  ADS  Google Scholar 

  61. De Benedictis S, Cramarossa F (1987) Chem Phys 112:363

    Article  Google Scholar 

  62. Popa SD (1996) J Phys D Appl Phys 29:411

    Article  ADS  Google Scholar 

  63. Ambrico PF, Bektursunova R, Dilecce G, De Benedictis S (2005) Plasma Sources Sci Technol 14:676

    Article  ADS  Google Scholar 

  64. Britun N, Gaillard M, Ricard A, Kim YM, Kim KS, Han JG (2007) J Phys D Appl Phys 40:1022

    Article  ADS  Google Scholar 

  65. Grigorian GM, Ionikh YZ (1989) Tepl Vys Temp 27:858 (in Russian)

    Google Scholar 

  66. Brachiniac P, Martin JP, Taieb G (1974) IEEE J QE 10:797

    Article  Google Scholar 

  67. Farrenq R, Rossetti C, Guelachvili G, Urban W (1985) Chem Phys 92:389

    Article  Google Scholar 

  68. Treanor CE, Rich JW, Rehm RG (1968) J Chem Phys 48:1798

    Article  ADS  Google Scholar 

  69. De Benedictis S, Capitelli M, d’Agostino R, Gorse C (1984) Chem Phys Lett 112:54

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This study was partially supported under grant No. 10-02-01289-a of Russian Foundation for Basic Research (GG) and French project of CNRS (AC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cenian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorian, G., Cenian, A. Formation and Excitation of CN Molecules in He–CO–N2–O2 Discharge Plasmas. Plasma Chem Plasma Process 31, 337–352 (2011). https://doi.org/10.1007/s11090-010-9285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9285-9

Keywords

Navigation