Skip to main content
Log in

Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid II: Behaviour of Thick Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

We study the interaction of thick films (~4 mm) of stearic acid (SA), a C18 alkane skeleton with an acid function, with late Ar–O2 post-discharge. Contrary to what is observed with thin films of SA (~2–3 μm) which are efficiently etched (part I), only functionalization is observed over the first 2 h of treatment with a plasma source operated in the continuous mode, whatever the temperature. The heat released by surface reactions affects non-linearly the temperature of the substrate. Pulsing the source at a frequency ranging from 0.1 to 1 kHz slows down the functionalization process but does not allow any etching of the material. On the contrary, the SA can be etched as thick films by pulsing the oxygen flow rate at a frequency below 50 mHz. By pulsing the reactive gas, the time averaged value of the [O]/[O2] ratio is decreased, limiting the functionalization processes due to oxygen atoms, and the mean temperature is lowered, decreasing the diffusion length of O2 (and/or possibly O2*) species in the SA which are responsible for the scission of C–C bonds of radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rongzhi L, Lin Y, Yiu WM (1997) Compos Part A: Appl Sci Manuf 28A:73–86

    Google Scholar 

  2. Egitto FD, Matienzo LJ (1994) IBM J Res Dev 38:423–439

    Article  Google Scholar 

  3. Stewart KR, Whiteshides GM, Godfried HP, Silvera IF (1986) Rev Sci Instrum 57:1381–1383

    Article  ADS  Google Scholar 

  4. Chu PK, Chen JY, Wang LP, Huang N (2002) Mat Sci Eng R Rep R36:143–206

    Article  Google Scholar 

  5. Risbud MV, Dabhade R, Gangal S, Bhonde RR (2002) J Biomater Sci Polym Ed 13:1067–1080

    Article  Google Scholar 

  6. Hong J, Truica-Marasescu F, Martinu L, Wertheimer MR (2002) Plasmas Polym 7:245–260

    Article  Google Scholar 

  7. Moreau S, Moisan M, Tabrizan M, Barbeau J, Pelletier J, Ricard A, Yahia L-H (2000) J Appl Phys 88:1166–1174

    Article  ADS  Google Scholar 

  8. Philip N, Saoudi B, Crevier M-C, Moisan M, Barbeau J, Pelletier J (2002) IEEE Trans Plasma Sci 30:1429–1436

    Article  ADS  Google Scholar 

  9. Ricard A, Moisan M, Moreau S (2001) J Phys D Appl Phys 34:1203–1212

    Article  ADS  Google Scholar 

  10. Bracco P, Brach del Prever EM, Cannas M, Luda MP, Costa L (2006) Polym Degrad Stab 91:2030–2038

    Article  Google Scholar 

  11. Premnath V, Harris WH, Jasty M, Merrill EW (1996) Biomoterials 17:1741–1753

    Article  Google Scholar 

  12. Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinaro P (1998) Biomaterials 19:659–668

    Article  Google Scholar 

  13. Fozza AC, Bergeron A, Klemberg-Sapieha JE, Wertheimer MR (1999) “Plasma Deposition and Treatment of Polymers.” Symposium 109–14. Edited by Lee WW, d’Agostino R, Wertheimer MR

  14. Fozza AC, Roch J, Klemberg-Sapieha JE, Kruse A, Holländer A, Wertheimer MR (1997) Nucl Instrum Methods Phys Res Sect B 131:205–210

    Article  ADS  Google Scholar 

  15. Wertheimer MR, Fozza AC, Holländer A (1999) Nucl Instrum Methods Phys Res Sect B 151:65–75

    Article  ADS  Google Scholar 

  16. Hody V, Belmonte T, Czerwiec T, Henrion G, Thiébaut JM (2006) Thin Solid Films 506–507:212–216

    Article  Google Scholar 

  17. Hody V, Belmonte T, Pintassilgo C, Poncin-Epaillard F, Czerwiec T, Henrion G, Segui Y, Loureiro J (2006) Plasma Chem Plasma Proc 26:251–266

    Article  Google Scholar 

  18. Belmonte T, Pintassilgo C, Czerwiec T, Henrion G, Hody V, Thiébaut JM, Loureiro J (2005) Surf Coat Technol 200:26–30

    Article  Google Scholar 

  19. Mafra M, Belmonte T, Poncin-Epaillard F, da Silva Sobrinho AS, Maliska A (2008) Plasma Chem Plasma Proc 28:495–509

    Article  Google Scholar 

  20. Mafra M, Belmonte T, Maliska A, da Silva Sobrinho AS, Cvelbar U, Poncin-Epaillard F (2008) Key Eng Mater 373–374:421–425

    Article  Google Scholar 

  21. Murillo R, Poncin-Epaillard F, Segui Y (2007) Eur Phys J Appl Phys 37:299–305

    Article  ADS  Google Scholar 

  22. SCA, USR–59, CNRS, Echangeur de Solaize, Chemin du Canal, 69360 Solaize, FRANCE. http://www.sca.cnrs.fr/

  23. Dorai R, Kushner MJ (2003) J Phys D Appl Phys 36:666–685

    Article  ADS  Google Scholar 

  24. Akishev Yu, Grushin M, Dyatko N, Kochetov I, Napartovich A, Trushkin N, Tran Minh Duc, Descours S (2008) J Phys D Appl Phys 41: 235203

Download references

Acknowledgments

The authors thank the CAPES/COFECUB, a joint Brazilian/French project (Ph 697/10), for support. These Researches were carried out within the framework of the Associated European Laboratory: «Laboratoire d’Interaction Plasma—Extrême Surface (LIPES)».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Belmonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardelli, E.A., Belmonte, T., Duday, D. et al. Interaction Mechanisms Between Ar–O2 Post-Discharge and Stearic Acid II: Behaviour of Thick Films. Plasma Chem Plasma Process 31, 205–215 (2011). https://doi.org/10.1007/s11090-010-9264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9264-1

Keywords

Navigation