Skip to main content
Log in

Destruction of Freon HFC-134a Using a Nozzleless Microwave Plasma Source

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, results of the pyrolysis of Freon HFC-134a (tetrafluoroethane C2H2F4) in an atmospheric pressure microwave plasma are presented. A waveguide-based nozzleless cylinder-type microwave plasma source (MPS) was used to produce plasma for the destruction of Freon HFC-134a. The processed gaseous Freon HFC-134a at a flow rate of 50–212 l min−1 was introduced to the plasma by four gas ducts which formed a swirl flow in the plasma reactor (a quartz cylinder). The absorbed microwave power was 0.6–3 kW. The experimental results showed that the Freon was converted into carbon black, hydrogen and fluorine. The total conversion degree of HFC-134a was up to 84% with selectivity of 100% towards H2, F2 and C2, which means that there was no conversion of HFC-134a into other hydrocarbons. The Freon destruction mass rate and corresponding energetic mass yield were up to 34.5 kg h−1 and 34.4 kg per kWh of microwave energy absorbed by the plasma, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Finkelstein A (ed) (1995) ODS Disposal Technology Update, UNEP-ODS Disposal Subcommittee

  2. Yu H, Kennedy EM, Adesinab AA, Dlugogorski BZ (2006) Catal Surv Asia 10:40–54

    Article  Google Scholar 

  3. Urashima K, Chang JS (2000) IEEE Trans Dielectr Electr Insul 7:602–614

    Article  Google Scholar 

  4. Huczko A (1994) Wiadomości Chemiczne 48:457–479 (in Polish)

    Google Scholar 

  5. Mizuno K (1995) ODS Disposal Technology Update, UNEP-ODS 225–241

  6. Czernichowski A (1991) Proc Int Symp High Pressure Low Temp Plasma Chemistry pp 141–52

  7. Donaldson AD, Apa RP, Eddy TL, Flinn JE (1991) Heat Transf Therm Plasma Process, ASME 1991 161:41–51

    Google Scholar 

  8. Rusowicz A (2000) Chłodnictwo Klimatyzacja 11–12:26–28 (in Polish)

    Google Scholar 

  9. Watanabe T, Tsuru T (2008) Thin Solid Films 516:4391–4396

    Article  ADS  Google Scholar 

  10. Jasiński M, Szczucki P, Dors M, Mizeraczyk J, Lubański M, Zakrzewski Z (2000) Czech J Phys 50:285–288

    Article  Google Scholar 

  11. Jasiński M, Szczucki P, Mizeraczyk J, Lubański M, Zakrzewski Z (2000) Trans Inst Fluid-Flow Machinery 107:55–63

    Google Scholar 

  12. Jasiński M, Mizeraczyk J, Czylkowski D, Zakrzewski Z (2001) Trans Inst Fluid-Flow Machinery 109:13–22

    Google Scholar 

  13. Jasiński M, Mizeraczyk J, Zakrzewski Z, Ohkubo T, Chang J-S (2002) J Phys D Appl Phys 35(227):4–80

    Google Scholar 

  14. Jasiński M, Dors M, Mizeraczyk J (2008) J Power Sources 181:41–45

    Article  Google Scholar 

  15. Jasiński M, Dors M, Mizeraczyk J (2009) Eur Phys J D, doi: 10.1140/epjd/e2008-00221-1

  16. Brady SG, Clauser HR (eds) (1979) Materials handbook, 11th edn. McGraw-Hill, NY, pp 134-136 and 418-419

  17. Petitpas G, Rollier J-D, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.03.026

  18. Bromberg L, Cohn DR, Rabinovich A, Alexeev N, Samokhin A, Ramprasad R, Tamhankar S (2000) Int J Hydrogen Energy 25:1157–1161

    Article  Google Scholar 

  19. Bromberg L, Cohn DR, Rabinovich A, Alexeev N (1999) Int J Hydrogen Energy 24:1131–1137

    Article  Google Scholar 

  20. Cormier JM, Rusu I (2001) J Phys D Appl Phys 34:2798–2803

    Article  ADS  Google Scholar 

  21. Jaccaud M, Faron R, Devilliers D, Romano R (2005) “Fluorine” in Ullmann’s encyclopaedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  22. Skalny JD, Sobek V, Lukac P (1993) NATO ASI Series G34A:151–165

    Google Scholar 

  23. Oh JH, Mok YS, Lee SB, Chang MS (2009) J Korean Phys Soc 54(4):1539–1546

    Article  Google Scholar 

  24. Mok YS, Lee SB, Chang MS (2009) IEEE Trans Plasma Sci 37(3):449–455

    Article  ADS  Google Scholar 

  25. Opalska A, Opalińska T, Polaczek J, Ochman P (2002) Int Symp HAKONE VIII, pp 191–195

  26. Watanabe T, Tsuru T (2008) Thin Solid Films 516(13):4391–4396

    Article  ADS  Google Scholar 

  27. Ohno M, Ozawa Y, Ono T (2007) Int J Plasma Environ Sci Technol 1(2):159–165

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Science and Higher Education (MNiSW) under the programme 3020/T02/2006/31 and by The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Jasiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasiński, M., Dors, M. & Mizeraczyk, J. Destruction of Freon HFC-134a Using a Nozzleless Microwave Plasma Source. Plasma Chem Plasma Process 29, 363–372 (2009). https://doi.org/10.1007/s11090-009-9183-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-009-9183-1

Keywords

Navigation