Skip to main content
Log in

Numerical Investigation of Substrate Melting and Deformation During Thermal Spray Coating by SPH Method

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The fluid–solid coupling model is developed to simulate substrate melting and deformation during molten droplet impact. In this model, the liquid and solid parts of splat and substrate are governed by the SPH formulations of the Navier–Stokes equations and the conservation equations of continuum mechanics, respectively. This is the first time that the fluid–solid coupling by the SPH method is applied to simulation of the interaction between droplet and substrate during thermal spray coating. The simulation results on formation of the crater are presented to study the Ni droplet impacting onto the Sn substrate, and Mo droplet impacting onto the Steel, Al, and Brass substrates, respectively. It is found that the initial temperatures and thermal properties of droplet and substrate have great effects on the substrate melting and the morphologies of the splat and the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J/kg K)

d :

Droplet diameter (m)

D :

Parameter in the form of the repulsive force

f :

Force (N)

g :

Gravity force (N)

G :

Shear modulus (Pa)

h :

Smoothing length (m)

I :

Unit tensor

J 0 :

Yield stress (Pa)

Ja :

Jakob number (= c pl (T m −T B )/L f )

k :

Thermal conductivity (W/m K)

K :

Permeability (m2)

L :

Latent heat (J/kg)

m :

Particle mass (kg)

p :

Pressure (Pa)

R :

Rotaotion rate tensor

Re:

Reynolds number (= ρVd/μ)

t :

Time (s)

T :

Temperature (K)

u :

Internal energy (J/kg)

U :

Velocity (m/s)

\( \vec{v} \) :

Particle velocity vector (m/s)

W :

Smoothing function (m−3)

r :

Particle position (m)

δ :

Dirac notation

ε :

Strain rate tensor

μ :

Viscosity coefficient (kg/m s)

ρ :

Particle density (kg/m3)

τ :

Viscous stress tensor, deviatoric stress tensor

:

Gradient operator

α, β :

Coordinate direction

i,j :

Particle index

m:

Melting

l :

Liquid

s :

Solid

References

  1. Heimann RB (1996) Plasma-spray coating. VCH

  2. Armster SQ (2002) Thermo-fluid mechanisms controlling droplet based materials processes. Int Mater Rev 47(4):169–190

    Article  Google Scholar 

  3. Escure C, Vardelle M, Fauchais P (2003) Experimental and theoretical study of the impact of alumina droplets on cold and hot substrates. Plasma Chem Plasma Process 23(2):185–221

    Article  Google Scholar 

  4. Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions—experimental studies of the deformation and breakup process. Int J Multiph Flow 21(2):151–173

    Article  MATH  Google Scholar 

  5. Stow CD, Hadfield MG (1981) An experimental investigation of fluid-flow resulting from the impact of a water drop with an unyielding dry surface. Proc Royal Soc Lond Ser A-Math Phys Eng Sci 373(1755):419–441

    ADS  Google Scholar 

  6. Zhang MY, Zhang H, Zheng LL (2007) Application of smoothed particle hydrodynamics method on free surface and solidification problems. Numer Heat Transf, Part A: Appl 52(4):299–314

    Article  Google Scholar 

  7. Zhang MY, Zhang H, Zheng LL (2008) Simulation of droplet spreading, splashing and solidification using smoothed particle hydrodynamics method. Int J Heat Mass Transf 51:3410–3419

    Article  MATH  MathSciNet  Google Scholar 

  8. Sun DW, Xu J, Zhang H, Wan YP, Prasad V, Wang GX (2000) Effect of contact resistance and substrate melting on thermal spray coating. thermal spray: surface engineering via applied research. ASM International, Materials Park

    Google Scholar 

  9. Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94:18

    Google Scholar 

  10. Zhang H (1999) Theoretical analysis of spreading and solidification of molten droplet during thermal spray deposition. Int J Heat Mass Transf 42(14):2499–2508

    Article  MATH  Google Scholar 

  11. Bussmann M, Mostaghimi J, Chandra S (1999) On a three-dimensional volume tracking model of droplet impact. Phys Fluids 11(6):1406–1417

    Article  MATH  ADS  Google Scholar 

  12. Bussmann M, Chandra S, Mostaghimi J (2000) Modeling the splash of a droplet impacting a solid surface. Phys Fluids 12(12):3121–3132

    Article  ADS  Google Scholar 

  13. Pasandideh-Fard M, Chandra S, Mostaghimi J (2002) A three-dimensional model of droplet impact and solidification. Int J Heat Mass Transf 45(11):2229–2242

    Article  MATH  Google Scholar 

  14. Mostaghimi J, Pasandideh-Fard M, Chandra S (2002) Dynamics of splat formation in plasma spray coating process. Plasma Chem Plasma Process 22(1):59–84

    Article  Google Scholar 

  15. Jiang XY, Wan YP, Wang XY, Zhang H, Goswami R, Herman H, Sampath S (2000) Investigation of splat/substrate contact during Molybdenum thermal spraying. Thermal spray: surface engineering via applied research, ASM International. Berndt, C. C. Materials Park, 729–36

  16. Wang SP, Wang GX, Matthys EF (1999) Deposition of a molten layer of high melting point material: substrate melting and solidification. Mater Sci Eng A 262:25–32

    Article  Google Scholar 

  17. Zhang H, Wang XY, Zheng LL, Jiang XY (2001) Studies of splat morphology and rapid solidification during thermal spraying. Int J Heat Mass Transf 44(24):4579–4592

    Article  MATH  Google Scholar 

  18. Li L, Wang XY, Wei G, Vaiday A, Zhang H, Sampath S (2004) Substrate melting during thermal spray splat quenching. Thin Solid Films 468:113–119

    Article  ADS  Google Scholar 

  19. Nugent S, Posch HA (2000) Liquid drops and surface tension with smoothed particle applied mechanics. Phys Rev E 62(4):4968–4975

    Article  ADS  Google Scholar 

  20. Cleary PW, Monaghan JJ (1999) Conduction modelling using smoothed particle hydrodynamics. J Comput Phys 148(1):227–264

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics—A Meshfree Particle Method. World Scientific

  22. Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Technol 177:41–48

    Article  Google Scholar 

  23. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgment

The first author acknowledges the support from National Natural Science Foundation of China (Grant No. 10742002 and 10802011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Zhang, H. & Zheng, L. Numerical Investigation of Substrate Melting and Deformation During Thermal Spray Coating by SPH Method. Plasma Chem Plasma Process 29, 55–68 (2009). https://doi.org/10.1007/s11090-008-9158-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9158-7

Keywords

Navigation