Skip to main content

Advertisement

Log in

Thermophysical Properties of H2O–Ar Plasmas at Temperatures 400–50,000 K and Pressure 0.1 MPa

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The article presents the calculation of thermophysical properties of the mixture water steam–argon which has been used to further enhance the characteristics of plasma torches stabilized by the water wortex. The calculations were performed at the temperatures 400–50,000 K and at 0.1 MPa. First, the composition and thermodynamic properties are determined by classical methods. Further the calculations of viscosity, electrical conductivity and thermal conductivity of the mixture are computed in the 4th approximation of the Chapman–Enskog method. The computation of collision integrals is described with special respect to the interactions of charged particles where the necessary calculations for the Coulomb potential screened at the Debye length were enlarged to cover the 4th approximation. Then the formulae describing the method based on the variational principle of solving the system of Boltzmann integrodifferential equations are shortly introduced and the transport coefficients are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

T :

Temperature

p :

Total pressure

n :

Total particle density

k :

Boltzmann constant

R :

Molar gas constant

e :

Electron charge

m e :

electron mass

h :

Planck constant

ɛ o :

Dielectric constant

Q i :

Internal partition function of the monatomic individual species i

E ij :

j-th energy level of the monatomic individual species i

g ij :

Statistical weight of the j-th energy level E ij

E iI :

Ionization energy of the monatomic individual species i

δE I :

Ionization energy lowering

λ D :

Debye shielding length

n k :

Particle density of k-th component

z k :

Charge of k-th component

H o i :

Standard-state enthalpy of the monatomic individual species i

c o pi :

Standard-state heat capacity of the monatomic individual species i

S o i :

Standard-state entropy of the monatomic individual species i

M i :

Molar mass of the monatomic individual species i

Q ip , Q ipp :

Auxiliary quantites related to the 1st and 2nd derivatives of Q i

\(K_{{A_{{(N + 1) +}}}}\) :

Equilibrium constant of the ionization of N-times ionized monatomic species A

\(Q_{{A_{{N +}}}} \) :

Internal partition function of N-times ionized monatomic species A

\(Q_{{A_{{(N + 1)+}}}}\) :

Internal partition function of N + 1-times ionized monatomic species A

\(E_{{A_{{N +}}}} \) :

ionization energy of N-times ionized monatomic species A

q :

Molar amount of argon in the mixture

x i :

Molar fraction of i-th component

m i :

Particle mass of i-th component

ps :

Number of components

ρ:

Equilibrium mass density of the mixture

H :

Equilibrium enthalpy of the mixture

M :

Molar mass of the mixture

S :

Equilibrium entropy of the mixture

c p :

Equilibrium heat capacity of the mixture at constant pressure

c v :

Equilibrium heat capacity of the mixture at constant volume

a :

Equilibrium sound velocity

Tα p :

Isobaric thermal expansion

pβ T :

Isothermal compressibility

η:

Viscosity [kg/m/s]

σ:

Electrical conductivity [A/V/m]

D ij :

Diffusion coefficient of component i into component j

D T i :

Coefficient of thermal diffusion of component i

λ′:

Translational thermal conductivity including electron component

λ t :

Thermal diffusion component of translational thermal conductivity

a im ,b im , c ji im :

Solutions of the system of Boltzmann equations

\(Q_{ij}^{(m,m^{\prime})} \) :

Coefficients in the system of Boltzmann equations

δ ik :

Cronecker delta

ζ:

Order of the Enskog–Chapman approximation

\(M_{mm^{\prime}}^l, N_{mm^{\prime}}^l \) :

Matrix elements of the linearized Boltzmann collision operator

μ, μ k :

Reduced mass

λint :

Internal thermal conductivity

λre :

Reaction thermal conductivity

Hr i :

Enthalpy of reaction constituting the i-th complex component

q ij :

Effective collision cross section between particles i and j

sk ij :

Stoichiometric coefficient

Ω (s,r) ij :

Collision integral

Ω(s,r)* :

Reduced (dimensionless) collision integral

γ:

Dimensionless velocity

T*:

Reduced temperature

r ij :

Particle diameter

σ LJ , (ɛ/k) LJ :

Lennard–Jones (6–12) parameters

ξ [A 3]:

Polarizability of neutral particle

References

  1. Hrabovsky M, Konrad M, Kopecky V, Sember V (1997) IEEE Trans Plasma Sci 25:833

    Article  Google Scholar 

  2. Hrabovsky M, Krenek P (1993) Proceedings of the 11th international symposium on plasma chemistry, Loughborough, p 315

  3. Hrabovský M, Kopecký V, Sember V, Kavka T, Chumak O, Konrád M (2006) IEEE Trans Plasma Sci 34:1566

    Article  Google Scholar 

  4. Krenek P, Nenicka V (1984) Acta Technica CSAV 29:420

    Google Scholar 

  5. Chase MW Jr (ed) (1998) NIST-JANAF thermochemical tables, 4th edn. Gaithersburg

  6. Glushko VP (ed) (1978) Termodinamicheskie svoistva individualnych veshchestv, 3rd edn. Izd Nauka, Moskva

    Google Scholar 

  7. NIST Atomic Spectra Database. http://physics.nist.gov

  8. Hirschfelder JO, Curtiss ChF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York, London

    MATH  Google Scholar 

  9. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas fundamentals and applications, vol 1. Plenum Press, New York, London

    Google Scholar 

  10. Mason EA, Munn RJ, Smith FJ (1967) Phys Fluids 10:1827

    Article  ADS  Google Scholar 

  11. Devoto RS (1973) Phys Fluids 16:616

    Article  ADS  Google Scholar 

  12. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Willey, New York

    Google Scholar 

  13. Krenek P (1991) Acta Technica CSAV 36:560

    Google Scholar 

  14. Spencer FE Jr, Phelps AV (1976) Proceedings of the 15th symposium on engineering aspects MHD, Philadelphia, p IX.9.1

  15. Svehla RA (1961) NASA Tech Rep R 132

  16. Cressault Y, Gleizes A (2004) J Phys D: Appl Phys 37:560

    Article  ADS  Google Scholar 

  17. Capitelli M, Gorse C, Longo S, Giordano D (1998) JTHT, AIAA 98:2936

    Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges the support of this work by the Institutional Research Plan No. AV0 Z20430508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Křenek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Křenek, P. Thermophysical Properties of H2O–Ar Plasmas at Temperatures 400–50,000 K and Pressure 0.1 MPa. Plasma Chem Plasma Process 28, 107–122 (2008). https://doi.org/10.1007/s11090-007-9113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9113-z

Keywords

Navigation