Skip to main content
Log in

Study of Injection Angle and Carrier Gas Flow Rate Effects on Particles In-Flight Characteristics in Plasma Spray Process: Modeling and Experiments

  • Original Papers
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper investigates the influence of particle injection angle on particle in-flight behaviors and characteristics at different primary and carrier gas flow rates through an integrated modeling and experimental approach. Particle in-flight status such as temperature, velocity, size and their distribution are analyzed to examine particle’s melting status before impact. Results from the experiments and numerical simulations both show that, when carrier gas flow rate is fixed, a small injection angle favors the particle melting and flattening. This behavior is independent of primary and secondary gas flow rates, spray distance and carrier gas flow rate. When both carrier gas flow and injection angle vary, a high carrier gas flow rate and a small injection angle are recommended for high particle temperature and velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a is :

Stoichiometric coefficient of the ith species in the sth reaction

b is :

Stoichiometric coefficient of the ith species in the sth reaction

c :

Concentration, mol m−3

C p :

Specific heat, J kg−1 K−1

C D :

Drag coefficient, dimensionless

d :

Particle initial diameter, m

D :

Diffusion coefficient, m2 s−1

F :

Momentum source due to particles, kg m−2 s−2

h :

Convection heat transfer coefficient, W m−2 K−1

h i :

Specific enthalpy, J kg−1

I:

Unit matrix

J i :

Mass flux of the ith species, kg m−2 s−1

k :

Thermal conductivity, W m−1 K−1

L m :

Latent heat of fusion, J kg−1

L v :

Latent heat of evaporation, J kg−1

M i :

Molecular weight of the ith species, kg mol−1

N p :

Number of particles in a computational grid

P :

Pressure, Pa

Pr :

Prandtl number, dimensionless

\(\dot {Q}\) :

Energy source due to particles, W m−3

r, R :

Radial coordinate, m

Re p :

Particle Reynolds number,\(\rho _f D_p | \tilde {V}+{V}^{\prime}-V_p|/\mu _f, \) dimensionless

Sh :

Sherwood number, dimensionless

t :

Time, s

T :

Temperature, K

T m :

Melting temperature, K

\(\vec {\tilde {u}}\) :

Favre average velocity vector, m s−1

\({\vec {u}}'\) :

Velocity fluctuation, m s−1

\(\vec {V}_p \) :

Particle velocity vector, m s−1

\(\dot {W}\) :

Source term in momentum equation due to particles, W m−3

x, y, z :

Coordinate, m

Y i :

Mass fraction of the ith species

\(\tilde {\kappa }\) :

Turbulent kinetic energy, J kg−1

\(\tilde {\varepsilon }\) :

Turbulent dissipation, m2 s−3

ɛ:

Emissivity, dimensionless

\(\Upphi\) :

Viscous dissipation, kg m−3 s−1

μ:

Viscosity, kg m−1 s−1

μ t :

Turbulent viscosity, kg m−1 s−1

θ:

Coordinate in the circumferential direction

ρ:

Density, kg m−3

σ:

Stress tensor, Pa

ω s :

Progress rate of the sth reaction, mol m−3

f :

Gas stream

i :

Species i

l :

Liquid

p :

Particle

s :

Solid

∞:

Ambient environment

\(\widetilde{}\) :

Favre average

T :

Transpose

References

  1. Fauchais P (2004) J Phys D–Appl Phys 37(9):R86

    ADS  Google Scholar 

  2. Zhao LD, Seemann K, Fischer A, Lugscheider E (2003) Surf Coatings Technol 168(2–3):186

    Article  Google Scholar 

  3. Fauchais P, Vardelle M (2003) In: Thermec’2003, Pts 1–5, pp 2459–2465

  4. Vardelle M, Vardelle A, Fauchais P, Li KI, Dussoubs B, Themelis NJ (2001) J Thermal Spray Technol 10(2):267

    Article  ADS  Google Scholar 

  5. Ahmed I, Bergman TL (2001) J Heat Transf–Trans ASME 123(1):188

    Article  Google Scholar 

  6. Ramachandran K, Nishiyama H (2002) J Phys D–Appl Phys 35(4):307

    ADS  Google Scholar 

  7. Fincke JR, Swank WD, Haggard DC (1997) In: Proceedings of the 1st united thermal spray conference, Indianapolis, IN, USA, pp 335–342

  8. Mariaux G, Fauchais P, Vardelle A, Pateyron B (2001) High Temp Mater Process 5(1):61

    Google Scholar 

  9. Wan YP, Prasad V, Wang GX, Sampath S, Fincke JR (1999) J Heat Transf–Trans ASME 121(3):691

    Google Scholar 

  10. Wan YP, Fincke JR, Sampath S, Prasad V, Herman H (2002) Int J Heat Mass Transf 45(5):1007

    Article  Google Scholar 

  11. Fincke JR, Swank WD, Haggard DC (2000) In: ITSC 2000: 1st international thermal spray conference, Montreal, Quebec, Canada, pp 9–14

  12. Huang PC, Heberlein J, Pfender E (1995) Plasma Chem Plasma Process 15(1):25

    Article  Google Scholar 

  13. Li HP, Chen X (2001) Thin Solid Films 390(1–2):175

    Article  Google Scholar 

  14. Delluc G, Ageorges H, Pateyron B, Fauchais P (2005) High Temp Mater Process 9(2):211

    Article  Google Scholar 

  15. Pfender E, Chang CH (1998) In: 15th international thermal spray conference, Nice, France, pp 315–327

  16. Xiong HB, Zheng LL, Sampath S, Williamson RL, Fincke JR (2004) Int J Heat Mass Transf 47(24):5189

    Article  MATH  Google Scholar 

  17. Chen X, Pfender E (1983) Plasma Chem Plasma Process 3(3):351

    Article  Google Scholar 

  18. Xiong HB, Zheng LL, Streibl T (2006) Plasma Chem Plasma Process 26(1):53

    Article  Google Scholar 

  19. Fincke JR, Swank WD, Bewley RL, Haggard DC, Gevelber M, Wroblewski D (2001) Surf Coatings Technol 146:537

    Article  Google Scholar 

  20. Streibl T, Vaidya A, Friis M, Srinivasan V, Sampath S (2006) Plasma Chem Plasma Process 26(1):73

    Article  Google Scholar 

  21. Vaidya A (2004) In: Materials sciences and engineering. Stony Brook University, Stony Brook, NY, pp 30–32

Download references

Acknowledgment

This work is supported by the NSF through DMR MRSEC-0080021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Zheng, L.L., Zhang, H. et al. Study of Injection Angle and Carrier Gas Flow Rate Effects on Particles In-Flight Characteristics in Plasma Spray Process: Modeling and Experiments. Plasma Chem Plasma Process 27, 701–716 (2007). https://doi.org/10.1007/s11090-007-9101-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9101-3

Keywords

Navigation