Skip to main content
Log in

Analytical Detectors Based on Microplasma Spectrometry

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Miniaturizing all dimensions of apparatus, such as electronics and computers, is the current trend followed by scientists in various fields. The idea of Lab-on-a-Chip has significantly expanded and found its broad applications in analytical chemistry. Microplasmas can act as a sample excitation source and are the miniaturized versions of full-sized plasmas. These can be created in various forms, such as direct current, microwave induced, capacitively coupled and inductively coupled plasmas. Scaling down the size would reduce the amount of gases, liquids and consumables required, as well as the sample analysis time, which in turn would decrease the operating costs. Therefore, several research groups are involved in the development of microplasmas for utilisation in analytical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Manz A, Graber N, Widmer HM (1990) Sens Actuators B1:244

    Google Scholar 

  2. Broekaert JAC (2002) Anal Bioanal Chem 374:182

    Article  Google Scholar 

  3. Franzke J, Kunze K, Miclea M, Niemax K (2003) J Anal At Spectrom 18:802

    Article  Google Scholar 

  4. Karanassios V (2004) Spectrochim Acta Part B 59:909

    Article  Google Scholar 

  5. Franzke J, Miclea M (2006) Appl Spectrosc 60:80A

    Article  Google Scholar 

  6. Bogaerts A, Neyts E, Gijbels R, van der Mullen J (2002) Spectr Acta B57:609

    Article  Google Scholar 

  7. Eijkel JCT, Stoeri H, Manz A (1999) Anal Chem 71:2600

    Article  Google Scholar 

  8. Eijkel JCT, Stoeri H, Manz A (2000) J Anal At Spectrom 15:297

    Article  Google Scholar 

  9. Eijkel JCT, Stoeri H, Manz A (2000) Anal Chem 72:2547

    Article  Google Scholar 

  10. Bessoth FG, Naji OP, Eijkel JCT, Manz A (2002) J Anal At Spectrom 17:794

    Article  Google Scholar 

  11. Naji OP, Manz A (2004) Lab Chip 4:431

    Article  Google Scholar 

  12. Schoenbach KH, El-Habachi A, Moselhy MM, Shi W, Stark RH (2000) Phys Plasmas 7:2186

    Article  ADS  Google Scholar 

  13. Penache C, Miclea M, Bräuning-Demian A, Hohn O, Schössler S, Jahnke T, Niemax K, Schmidt-Böcking H (2002) Plasma Sources Sci Technol 11:476

    Article  ADS  Google Scholar 

  14. Miclea M, Kunze K, Heitmann U, Florek S, Franzke J, Niemax K (2005) J Phys D 38:1709

    Article  ADS  Google Scholar 

  15. Miclea M, Kunze K, Franzke J, Niemax K (2002) Spectrochim Acta Part B 57:1585

    Article  Google Scholar 

  16. Micea M, Kunze K, Franzke J, Niemax K (2004) JAAS 19:990

    Google Scholar 

  17. Guchardi R, Hauser P (2003) J Anal At Spectrom 18:1056

    Article  Google Scholar 

  18. Guchardi R, Hauser PC (2004) J Chromatogr A 1033:333

    Article  Google Scholar 

  19. Guchardi R, Hauser PC (2004) Analyst 129:347

    Article  Google Scholar 

  20. Guchardi R, Hauser PC (2004) J Anal At Spectro 19:945

    Article  Google Scholar 

  21. Skelton RJ Jr, Markides KE, Farnsworth PB, Lee ML, Yang FJJ (1988) High Resolut Chromatogr Commun 11:75

    Article  Google Scholar 

  22. Skelton RJ Jr, Chang H-CK, Farnsworth PB, Markides KE, Lee ML (1989) Anal Chem 61:2292

    Article  Google Scholar 

  23. Skelton RJ Jr, Markides KE, Lee ML, Farnsworth PB (1990) Appl Spectrosc 44:853

    Article  ADS  Google Scholar 

  24. Pedersen-Bjergaard S, Greibrokk T (1993) Anal Chem 65:1998

    Article  Google Scholar 

  25. Pedersen-Bjergaard S, Greibrokk T (1994) J Microcolumn Sep 6:11

    Article  Google Scholar 

  26. Brede C, Pedersen-Bjergaard S, Lundanes E, Greibrokk T (1998) Anal Chem 70:513

    Article  Google Scholar 

  27. Liang DC, Blades MW (1988) Anal Chem 60:27

    Article  Google Scholar 

  28. Rahman MM, Blades MW (2000) J Anal At Spectrom 15:1313

    Article  Google Scholar 

  29. Bass A, Chevalier C, Blades MW (2001) J Anal At Spectrom 16:919

    Article  Google Scholar 

  30. Yoshiki H, Horiike Y (2001) Jpn J Appl Phys 40:360

    Article  Google Scholar 

  31. Yoshiki H, Oki A, Ogawa H, Horiike Y (2002) Thin Solid Films 407:156

    Article  Google Scholar 

  32. Taniguchi K, Fukasawa T, Yoshiki H, Horiike Y (2002). In: Proceedings of International Symposium on Dry Process (DPS2002), Tokyo, Japan, 10–11 October 2002, pp 75–80

  33. Platzer B (2002) Eur Pat 0 965 035 B1

  34. Platzer B (2003) Eur Pat 0 965 253 B1

  35. Martin F (2001) PhD Thesis, Technische Bergakademie Freiberg

  36. Quan X, Chen S, Platzer B, Chen J, Gfrerer M (2002) Spectrochim Acta B57:189

    Google Scholar 

  37. Hopwood JA (1999) US patent 5.942.855

  38. Yin Y, Messier J, Hopwood JA (1999) IEEE Trans Plasma Sci 27:1516

    Article  Google Scholar 

  39. Hopwood JA (2000) J Micro Electro Mech Syst 9:309

    Google Scholar 

  40. Hopwood JA, Minayeva O, Yin Y (2000) J Vac Sci Technol B 18:2446

    Article  Google Scholar 

  41. Iza F, Hopwood J (2002) Plasma Sources Sci Technol 11:229

    Article  ADS  Google Scholar 

  42. Minayeva OB, Hopwood JA (2000) J Anal At Spectrom 17:1103

    Article  Google Scholar 

  43. JA Hopwood (2002) Proceedings of International symposium on dry process 2002 (DPS2002), Tokyo, Japan, 10–11 October 2002, pp 63– 67

  44. Minayeva OB, Hopwood JA (2003) J Anal At Spectrom 18:856

    Article  Google Scholar 

  45. Minayeva OB, Hopwood JA (2003) J Appl Phys 94:2821

    Article  ADS  Google Scholar 

  46. Iza F, Hopwood JA (2003) IEEE Trans Plasma Sci 31:782

    Article  Google Scholar 

  47. Ichiki T, Koidesawa T, Horiike Y (2003) Plasma Sources Sci Technol 12:16

    Article  ADS  Google Scholar 

  48. Iza F, Hopwood JA (2004) IEEE Transactions in Plasma Science 32:498

    Article  Google Scholar 

  49. Bilgic AM, Voges E, Engel U, Broekaert JAC (2000) J Anal At Spectrom 15:579

    Article  Google Scholar 

  50. Bilgic AM, Engel U, Kuckelheim M, Broekaert JAC (2000) Plasma Sources Sci Technol 9:1

    Article  ADS  Google Scholar 

  51. Bilgic AM, Voges E, Prokisch C, Broekaert JAC (2000) German Patent DE 98-19851628

  52. Engel U, Bilgic AM, Haase O, Voges E, Broekaert JAC (2000) Anal Chem 72:193

    Article  Google Scholar 

  53. Bilgic AM, Voges E, Engel U, Broekaert JAC (2000) J Anal At Spectrom 15:579

    Article  Google Scholar 

  54. Schermer S, Bings NH, Bilgic AM, Stonies R, Voges E, Broekaert JAC (2003) Spectrochim Acta Part B 58:1585

    Article  Google Scholar 

  55. Broekaert JAC, Siemens V, Bings NH (2005) IEEE Trans Plasma Science 33:560

    Article  Google Scholar 

  56. Stonies R, Schermer S, Voges E, Broekaert JAC (2004) Plasma Sources Sci Technol 13:604

    Article  ADS  Google Scholar 

  57. Iza F, Hopwood JA (2003) IEEE Trans Plasma Sci 31:782

    Article  Google Scholar 

  58. Hopwood JA, Iza F (2004) J Anal At Spectrom 19:1145

    Article  Google Scholar 

  59. Iza F, Hopwood JA (2004) IEEE Trans Plasma Sci 32:498

    Article  Google Scholar 

  60. Cerfalvi T, Metzei P, Apai P (1993) J Phys D 26:2184

    Article  ADS  Google Scholar 

  61. Marcus RK, Davis WC (2001) Anal Chem 73:2903

    Article  Google Scholar 

  62. Venzie JL, Marcus RK (2005) Anal Bioanal Chem 381:96

    Article  Google Scholar 

  63. Jenkins G, Manz A (2002) J Micromech Microeng 12:19

    Article  Google Scholar 

  64. Jenkins G, Franzke J, Manz A (2005) Lab Chip 5:711

    Article  Google Scholar 

  65. Wilson CG, Gianchandani YB (2002) IEEE Trans Electron Dev 49:2317

    Article  Google Scholar 

  66. Iiduka A, Morita Y, Tamiya E, Takamura Y (2004) In: Micro total analysis systems proceedings, The Royal Society of Chemistry, p 423

  67. Matsumoto H, Iiduka A, Yamamoto T, Tamiya E, Takamura Y (2005) In: Micro total analysis systems proceedings, The Royal Society of Chemistry, p 427

Download references

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen, by the Bundesministerium für Bildung und Forschung, and by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Franzke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miclea, M., Franzke, J. Analytical Detectors Based on Microplasma Spectrometry. Plasma Chem Plasma Process 27, 205–224 (2007). https://doi.org/10.1007/s11090-007-9056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-007-9056-4

Keywords

Navigation