Skip to main content
Log in

UV Absorptance of Titanium Dioxide Thin Films by Plasma Enhanced Deposition from Mixtures of Oxygen and Titanium-Tetrakis-Isopropoxide

  • Original Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A low pressure radio frequency discharge was used to deposit films by mixtures of oxygen and titanium (IV) isopropoxide (TTIP) at powers of 200 W on films of polyethylene-terephthalat and samples of quartz glass. In the non-thermal plasma, films of rather pure TiO2 could be deposited as revealed by X-ray photo-electron spectroscopy. Besides the film growth rate and the chemical composition, the spectral behaviour of the spectral transmittance of visually transparent films was determined in the range from 200 to 500 nm. Furthermore, the absorptance of films has been derived at characteristic spectral positions of the transmission spectra of the films. Accordingly, cut-off wavelength was found to increase with deposition time from 5 to 10 min as well as with the concentration of TTIP in a range below 1.7%. At 310 nm, the spectral absorption coefficient (extinction coefficient × concentration) was 12 μm−1. While keeping other parameters constant, this coefficient decreased by 4 μm−1 due to an increase of the concentration of TTIP from 1.7% to 8%. Simultaneously, the surface roughness increased as revealed by profilometry. Thus, since the chemical structure of films was found to change only marginally, a decrease of the film density is likely to cause the observed dependence of the absorption coefficient with increasing precursor concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell SA, Kim HS, Gilmer DC, He B, Ma T, Gladfelter WL (1999). IBM J Res Dev 43(16): 383

    Article  Google Scholar 

  2. Balog M, Schieber M, Michman M, Patai S (1972). J Cryst Growth 17(DEC):298

    Article  ADS  Google Scholar 

  3. Yan J, Gilmer DC, Campbell SA, Gladfelter WL, Schmid PG (1996). J Vac Sci Technol B14:1706

    Google Scholar 

  4. Fuyuki T, Matsunami H (1986). J Appl Phys 25:1288

    Article  Google Scholar 

  5. Richards BS, Cotter JE, Honsberg CB (2002). Appl Phys Lett 80:1123

    Article  ADS  Google Scholar 

  6. Szabo G, Kovacs L, Vargha K, Barabas J, Nemeth Z (1999). J Long Term Eff Med Implants 3:247

    Google Scholar 

  7. Kurtz SR, Gordon RG (1987). Thin Solid Films 147:167

    Article  ADS  Google Scholar 

  8. Yeung KS, Lam YW (1983). Thin Solid Films 109(2):169

    Article  ADS  Google Scholar 

  9. Glocker DE, Ismat Shah S (eds) (1995). Handbook of thin film process technology, vol 2. IOP Publishing, pp X1.3.5:1

  10. Pulker HK (1984). Coatings on glass, vol 6. Elsevier, Amsterdam, p 484

    Google Scholar 

  11. O’Regan B, Grätzel M (1991). Nature 353:737

    Article  Google Scholar 

  12. Kang MG, Park NG, Chang SH, Choi SH, Kim KJ (2002). Bull Kor Chem Soc 23(1):140

    Article  Google Scholar 

  13. Fujishima A, Honda K (1972). Nature 238(5358):37

    Article  ADS  Google Scholar 

  14. Hardee KL, Bard AJ (1975). J Electrochem Soc 122(6):739

    Article  Google Scholar 

  15. Jaeger CD, Bard AJ (1979). J Phys Chem 83(24):3146

    Article  Google Scholar 

  16. Gamble L, Jung LS, Campbell CT (1996). Sur Sci 348(1–2):1

    Article  ADS  Google Scholar 

  17. Ichikawa S, Doi R (1996). Catal Today 27(1–2):271

    Article  Google Scholar 

  18. Larson SA, Widegren JA, Falconer JL (1995). J Catal 157(2):611

    Article  Google Scholar 

  19. Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999). Thin Solid Films 351(1–2):260

    Article  ADS  Google Scholar 

  20. Miyauchi M, Kieda N, Hishita S, Mitsuhashi T, Nakajima A, Watanabe T, Hashimoto K (2002). Surf Sci 511(1–3):401

    Article  ADS  Google Scholar 

  21. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T (1997). Nature 388(6641):431

    Article  ADS  Google Scholar 

  22. Wang R, Sakai N, Fujishima A, Watanabe T, Hashimoto K (1999). J Phys Chem B103(12):2188

    Google Scholar 

  23. Kamei M, Mitsuhashi T (2000). Surf Sci 463:L609

    Article  Google Scholar 

  24. Rausch N, Burte EP (1993). J Electrochem Soc 140(1):145

    Article  Google Scholar 

  25. Tang H, Prasad K, Sanjines R, Schmid PE, Levy F (1994). J Appl Phys 75(4):2042

    Article  ADS  Google Scholar 

  26. Chang HLM, You H, Guo J, Lam DJ (1991). Appl Surf Sci 48–9:12

    Article  ADS  Google Scholar 

  27. Fitzgibbons ET, Sladek KJ, Hartwig WH (1972). J Electrochem Soc 119(6):735

    Article  Google Scholar 

  28. Martinet C, Paillard V, Gagnaire A, Joseph J (1997). J Non-Crystalline Solids 216:77

    Article  ADS  Google Scholar 

  29. Song Y, Sakurai T, Kishimoto K, Maruta K, Matsumoto S, Kikuchi K (1998). Vacuum 51(4):525

    Article  Google Scholar 

  30. Battiston GA, Gerbasi R, Gregori A, Porchia M, Cattarin S, Rizzi GA (2000). Thin Solid Films 371(1–2):126

    Article  ADS  Google Scholar 

  31. da Cruz NC, Rangel EC, Wang JJ, Trasferetti BC, Davanzo CU, Castro SGC, de Moraes MAB (2000). Surf Coatings Technol 126(2–3):123

    Article  Google Scholar 

  32. Nakamura M, Aoki T, Hatanaka Y, Korzec D, Engemann J (2001). J Mater Res 16(2):621

    Article  ADS  Google Scholar 

  33. McCurdy PR, Sturgess LJ, Kohli S, Fisher ER (2004). Appl Surf Sci 233(1–4):69

    Article  ADS  Google Scholar 

  34. Nakamura M, Kato S, Aoki T, Sirghi L, Hatanaka Y (2001). Thin Solid Films 401(1–2):138

    Article  ADS  Google Scholar 

  35. Nakamura M, Kato S, Aoki T, Sirghi L, Hatanaka Y (2001). J Appl Phys 90(7):3391

    Article  ADS  Google Scholar 

  36. Xiang JH, Masuda Y, Koumoto K (2004). Adv Mater 16(16):1461

    Article  Google Scholar 

  37. Hatanaka Y, Naito H, Itou S, Kando M (2005). Appl Surf Sci 244(1–4):554

    Article  ADS  Google Scholar 

  38. Taga Y (1997). J Non-Crystalline Solids 218:335

    Article  ADS  Google Scholar 

  39. Torikai A, Mitsuoka T, Fueki K (1993). J Polym Sci A 31:2785

    Article  Google Scholar 

  40. Rivaton A (1995). Polym Degrad Stab 49:163

    Article  Google Scholar 

  41. Mitsuoka T, Torikai A, Fueki K (1993). J Appl Polym Sci 47(6):1027

    Article  Google Scholar 

  42. Lahouidak J (1991) Etude de couches minces de TiO2 déposées par CVD et CVD assistée plasma, PhD Thesis at University of Montpellier, Ecole nationale supérieure de chemie de Montpellier, P 51

  43. Smith RC, Ma TZ, Hoilien N, Tsung LY, Bevan MJ, Colombo L, Roberts J, Campbell SA, Gladfelter WL (2000). Adv Mater Opt Electron 10(3–5):105

    Article  Google Scholar 

  44. Goossens A, Maloney EL, Schoonman J (1998). Chem Vapor Depos 4(3):109

    Article  Google Scholar 

  45. Zehnder T, Patscheider J (2000). Surf Coatings Technol 133:138

    Article  Google Scholar 

  46. Sonnenfeld A, Tun TM, Zajicková L, Kozlov KV, Wagner H-E, Behnke JF, Hippler R (2001). Plasmas Polym 6(4):237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Rudolf von Sonnenfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnenfeld, A., von Sonnenfeld, P.R. & Hauert, R. UV Absorptance of Titanium Dioxide Thin Films by Plasma Enhanced Deposition from Mixtures of Oxygen and Titanium-Tetrakis-Isopropoxide. Plasma Chem Plasma Process 26, 319–334 (2006). https://doi.org/10.1007/s11090-006-9022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-006-9022-6

Keywords

Navigation