Skip to main content

Advertisement

Log in

Influence of Ferroelectric Materials and Catalysts on the Performance of Non-Thermal Plasma (NTP) for the Removal of Air Pollutants

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The introduction of ferroelectric and catalytically active materials into the discharge zone of NTP reactors is a promising way to improve their performance for the removal of hazardous substances, especially those appearing in low concentrations. In this study, several coaxial barrier-discharge plasma reactors varying in size and barrier material (glass, Al2 O3, and TiO2) were used. The oxidation of methyl tert-butyl ether (MTBE), toluene and acetone was studied in a gas-phase plasma and in various packed-bed reactors (filled with ferroelectric and catalytically active materials). In the ferroelectric packed-bed reactors, better energy efficiency and CO2 selectivity were found for the oxidation of the model substances. Studies on the oxidation of a toluene/acetone mixture in air showed an enhanced oxidation of the less reactive acetone related to toluene in the ferroelectric packed-bed reactors. It can be concluded that the change of the electrical discharge behaviour was caused by a larger number of non-selective and highly reactive plasma species formed within the ferroelectric bed. When combining ferroelectric (BaTiO3) and catalytically active materials (LaCoO3), only a layered implementation led to synergistic effects utilising both highly energetic species formed in the ferroelectric packed-bed and the potential for total oxidation provided by the catalytically active material in the second part of the packed bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Futamura A. Zhang G. Prieto T. Yamamoto (1998) IEEE Trans. Ind. Appl 34 967 Occurrence Handle10.1109/28.720436

    Article  Google Scholar 

  2. A. Ogata K. Mizuno S. Kushiyama T. Yamamoto (1998) Plasma Chem. Plasma Process 18 383 Occurrence Handle10.1023/A:1021897419040

    Article  Google Scholar 

  3. A. Ogata D. Ito K. Mizuno S. Kushiyama A. Gal T. Yamamoto (2002) Appl Catal A: General 236 9 Occurrence Handle10.1016/S0926-860X(02)00280-6

    Article  Google Scholar 

  4. V. Demidiouk S.I. Moon J.O. Chae (2003) Catal. Commun 4 51 Occurrence Handle10.1016/S1566-7367(02)00256-X

    Article  Google Scholar 

  5. A. Gervasini V. Ragaini (2000) Catal. Today 60 129 Occurrence Handle10.1016/S0920-5861(00)00324-2

    Article  Google Scholar 

  6. G. Pietro O. Pietro K. Mizuno C. Gay T. Yamamoto (1999) Latin Amer. Appl. Res 30 27

    Google Scholar 

  7. Y.F. Wang W.J. Lee C.Y. Chen L.T. Hsieh (1999) Environ Sci. Technol 33 2234

    Google Scholar 

  8. T. Oda (2003) J Electrostat. 57 293 Occurrence Handle10.1016/S0304-3886(02)00179-1 Occurrence Handle2004a:03026

    Article  MathSciNet  Google Scholar 

  9. A. Gal M. Kurahashi M. Kuzumoto (1999) J. Phys. D: Appl. Phys 32 1163 Occurrence Handle10.1088/0022-3727/32/10/313 Occurrence Handle1999JPhD...32.1163G

    Article  ADS  Google Scholar 

  10. K. Kiyokawa H. Matsuoka A. Itou K. Hasegawa K. Sugiyama (1999) Surface Coatings Techn 112 25

    Google Scholar 

  11. R. Li Y. Keping J. Miao X. Wu (1998) Chem. Eng. Sci 53 1529

    Google Scholar 

  12. T. Hammer T. Kappes M. Baldauf (2004) Catal. Today 89 5 Occurrence Handle10.1016/j.cattod.2003.11.001

    Article  Google Scholar 

  13. Rajanikanth B., Okumoto M., Katsura S., Mizuno A. Proc IEEE Ann Meeting 1995, p. 1813 (1995)

  14. L.M. Zhou B. Xue U. Kogelschatz B. Eliasson (1998) Plasma Chem. Plasma Process 18 375 Occurrence Handle10.1023/A:1021849503110

    Article  Google Scholar 

  15. W. Cho Y. Baek S.K. Moon Y.C. Kim (2002) Catal. Today 74 207 Occurrence Handle10.1016/S0920-5861(02)00030-5

    Article  Google Scholar 

  16. M. Kraus B. Eliasson U. Kogelschatz A. Wokaun (2001) Phys. Chem. Chem. Phys 3 294 Occurrence Handle10.1039/b007015g

    Article  Google Scholar 

  17. S.-S. Kim H. Lee B.-K. Na H.K. Song (2004) Catal. Today 89 193 Occurrence Handle10.1016/j.cattod.2003.11.026

    Article  Google Scholar 

  18. B.M. Penetrante M.C. Hsiao B.T. Merritt G.E. Vogtlin P.H. Wallmann (1995) IEEE Trans. Plasma Sci 23 679 Occurrence Handle10.1109/27.467990

    Article  Google Scholar 

  19. A. Gervasini C.L. Bianchi V. Ragani (1994) ACS Symp Series 552 353

    Google Scholar 

  20. S.A. Vitale K. Hadidi D.R. Cohn L. Bromberg (1997) J. Appl. Phys 81 2863 Occurrence Handle10.1063/1.363945 Occurrence Handle1997JAP....81.2863V

    Article  ADS  Google Scholar 

  21. B.M. Penetrante M.C. Hsiao B.T. Merritt G.E. Vogtlin P.H. Wallmann (1995) IEEE Trans. Plasma Sci 23 679 Occurrence Handle10.1109/27.467990

    Article  Google Scholar 

  22. B.M. Penetrante M.C. Hsiao B.T. Merritt G.E. Vogtlin M. Neiger O. Wolf T. Hammer S. Boer (1996) Appl. Phys. Lett. 68 3719 Occurrence Handle10.1063/1.115984 Occurrence Handle1996ApPhL..68.3719P

    Article  ADS  Google Scholar 

  23. Heat W., Birmingham J. Report, U.S. Department of Energy (1995).

  24. J. Chae S. Moon H. Sun K. Kim V. Vassiliev B. Mikholap (1999) KSME Int J 13 647

    Google Scholar 

  25. A. Ogata K. Yamanouchi K. Mizuno S. Kushiyama T. Yamamoto (1999) Plasma Chem. Plasma Process 19 383 Occurrence Handle10.1023/A:1021820403362

    Article  Google Scholar 

  26. H. Kobno A. Berezin J.-S. Chang M. Tamura T. Yamamoto A. Shibuya S. Honda (1998) IEEE Trans. Ind. Appl 34 953

    Google Scholar 

  27. U. Roland F. Holzer F.-D. Kopinke (2002) Catal. Today 73 315 Occurrence Handle10.1016/S0920-5861(02)00015-9

    Article  Google Scholar 

  28. C.-J. Liu J.-X. Wang K.-I. Yu B. Eliasson Q. Xia B. Xue Y.-H. Zhang (2002) J. Electrostat 54 149 Occurrence Handle10.1016/S0304-3886(01)00173-5

    Article  Google Scholar 

  29. F. Holzer U. Roland F.-D. Kopinke (2002) Appl. Catal. B: Environ 38 163 Occurrence Handle10.1016/S0926-3373(02)00040-1

    Article  Google Scholar 

  30. S. Futamura H. Einaga H. Kabashima L.Y. Hwan (2004) Catal. Today 89 89 Occurrence Handle10.1016/j.cattod.2003.11.014

    Article  Google Scholar 

  31. A. Ogata H. Einaga H. Kabashima S. Futamura S. Kushiyama H.-H. Kim (2003) Appl. Catal. B: Environ. 46 87 Occurrence Handle10.1016/S0926-3373(03)00180-2

    Article  Google Scholar 

  32. Eliasson B., Zhang K., Kogelschatz U., Killer E., B Xue EP 1184078 (2000).

  33. M. Kang B.-J. Kim S.M. Cho C.-H. Chung B.-W. Kim C.Y. Han K.J. Yoon (2002) J Molecular Catal A: Chemical 180 125

    Google Scholar 

  34. D. Li D. Yakushiji S. Kanazawa T. Ohkubo Y. Nomoto (2002) J Electrostat 55 311 Occurrence Handle10.1016/S0304-3886(01)00213-3

    Article  Google Scholar 

  35. C. Ayrault J. Barrault N. Blin-Simiand F. Jorand S. Pasquiers A. Rousseau J.M. Tatibouët (2004) Catal Today 89 75 Occurrence Handle10.1016/j.cattod.2003.11.042

    Article  Google Scholar 

  36. M.B. Chang H.M. Lee (2004) Catal Today 89 109 Occurrence Handle10.1016/j.cattod.2003.11.016

    Article  Google Scholar 

  37. U. Roland C.P. Renschen D. Lippik F. Stallmach P. Holzer (2003) Sensor Lett. 1 93

    Google Scholar 

  38. A. Rückauf PhD Thesis, Martin-Luther-Universität Halle-Wittenberg (2002); http://sundoc.bibliothek.uni-halle.de/diss-online/02/02H124/index.htm

  39. T. Yamamoto K. Ramanathan A. Lawless D. Ensor R. Newsome N. Plaks G. Ramsey (1992) IEEE Trans. Ind. Appl 28 528

    Google Scholar 

  40. Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. J Phys Chem Rev Data 17 (1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Roland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzer, F., Kopinke, F.D. & Roland, U. Influence of Ferroelectric Materials and Catalysts on the Performance of Non-Thermal Plasma (NTP) for the Removal of Air Pollutants. Plasma Chem Plasma Process 25, 595–611 (2005). https://doi.org/10.1007/s11090-005-6804-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-005-6804-1

Keywords

Navigation