Skip to main content
Log in

The Role of Oxygen Dissociation in Plasma Enhanced Chemical Vapor Deposition of Zinc Oxide from Oxygen and Diethyl Zinc

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of electron impact dissociation of oxygen on neutral chemistry was studied for plasma-enhanced chemical vapor deposition (PECVD) of zinc oxide using oxygen and diethyl zinc. Electron conditions in the reactor were estimated based on simulations of well-known Ar-O2 plasmas, while the majority of the thermal chemistry was abstracted from the combustion literature. A rudimentary model of film growth was developed using the rate of oxygen dissociation as the lone adjustable parameter.n Model results were compared directly with experimental measurements of deposition rates and neutral species densities for a wide range of conditions. Good quantitative agreement between experiments and model were observed as a function of composition and rf power. The system is highly sensitive to the electron impact dissociation of oxygen, which creates the radical pool that drives the majority of the chemistry. The approach detailed here provides a framework for the development of models of oxide PECVD derived from other metalorganic precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B Cho S. Lao L. Sha J.P. Chang (2001) J. Vac. Sci. Technol. A 19 2751

    Google Scholar 

  • B. C. Lai J. Y. Lee (1999) J. Electrochem. Soc. 146 266

    Google Scholar 

  • K. Choi W. Shin S. Yoon (2002) J. Electrochem.Soc. F18 149

    Google Scholar 

  • K.-J. Choi W.-C. Shin S.-G. Yoon (2003) J. Mater. Res 18 1

    Google Scholar 

  • B. Cho S. Lao L. Sha J. P. Chang (2001) J. Vac. Sci. Technol. A 19 2751

    Google Scholar 

  • B.-O. Cho J. Wang J. P. Chang (2002) J. Appl. Phys. 92 4238

    Google Scholar 

  • J. J. Robbins C. Fry C. A. Wolden (2004) J. Cryst. Growth 263 283

    Google Scholar 

  • W. B. Henley G. J. Sacks (1997) J. Electrochem. Soc 144 1045

    Google Scholar 

  • M. Seman C. A. Wolden (2003) J. Vac. Sci. Technol. A 21 1927

    Google Scholar 

  • J.-G. Zhang P. Liu J. A. Turner C. E. Tracy D. K. Benson (1998) J. Electrochem. Soc. 145 1889

    Google Scholar 

  • V. D. Noto A. Gregori G. A. Rizzi E. Tondello (2000) Chem. Mater 12 98

    Google Scholar 

  • F. Arefi-Khonsari F. Hellegouarc’h J. Amouroux (1998) J. Vac. Sci. Technol. A 16 2240

    Google Scholar 

  • J. J. Robbins R. T. Alexander W. Xiao T. L. Vincent C. A. Wolden (2002) Thin Solid Films 406 145

    Google Scholar 

  • J. J. Robbins J. Esteban C. Fry C. A. Wolden (2003) J Electrochem. Soc 150 C693

    Google Scholar 

  • Y. C. L. B. S. Li Z. S. Chu D. Z. Shen Y. M. Lu J. Y. Zhang X. W. Fan (2002) J. Appl. Phys. 91 501

    Google Scholar 

  • L. Martinu D. Poitras (2000) J. Vac. Sci. Technol. A 18 2619

    Google Scholar 

  • P. Tristant Z. Ding Q. B. T. Vinh H. Hidalgo J. L. Jauberteau J. Desmaison C. Dong (2001) Thin Solid Films 390 51

    Google Scholar 

  • K. Itoh K. Matumoto O. Matsumoto (1997) Proc. 14th Int. Conf. Chem. Vapor Deposit. 1238 1

    Google Scholar 

  • G. D. Giuseppe J. R. Selman (2001) J. Mater. Res 16 2963

    Google Scholar 

  • K.-I. Itoh O. Matsumoto (1999) Thin Solid Films 345 29

    Google Scholar 

  • T Chiba K.-I Itoh O. Matsumoto (1997) Thin Solid Films 300 6

    Google Scholar 

  • M. Yoshida H. Yamaguchi T. Sakuma Y. Miyasaka P.-Y. Lesaicherre A. Ishitani (1995) J. Electrochem. Soc 142 244

    Google Scholar 

  • D. Economou (2000) Thin Solid Films 365 348

    Google Scholar 

  • E. Meeks P. Ho (2000) Thin Solid Films 365 334

    Google Scholar 

  • M.J. Kushner (1988) J. Appl. Phys. 63 2532

    Google Scholar 

  • T. I. Sommerer M. J. Kushner (1992) J. Appl. Phys. 71 1654

    Google Scholar 

  • M.J. Kushner (1992) J.Appl. Phys. 74 6538

    Google Scholar 

  • V. V. Lissianski, V. M. Zamansky, and W. C. Gardiner Jr, in Gas-Phase Combustion Chemistry, W. C. Gardiner ed., Springer, New York, 2000, (Chapter 1)

  • E.S. Aydil D.J. Economou (1992) J. Electrochem. Soc. 139 1396

    Google Scholar 

  • D. P. Lymberpoulous V. I. Kolobov D. J. Economou (2003) J. Vac. Sci. Technol. A 16 564

    Google Scholar 

  • T. Novikova B. Kalanche P. Bulkin K. Hassouni W. Morscheidt P. R. I. Cabarrocas (2003) J. Appl. Phys 93 3198

    Google Scholar 

  • C.K. Birdsall (1991) IEEE Trans. Plasma Sci 19 68

    Google Scholar 

  • S. Longo (2000) Plasma Sources Sci. Technol 9 468

    Google Scholar 

  • W. Morsheidt K. Hassouni N. Bauduin F. Arefi-Khonsari J. Amouroux (2003) Plasma Chem. Plasma Proc 23 117

    Google Scholar 

  • J. Hoard T. J. Wellington R. L. Bretz A. Malkin R. Dorai M.J. Kushner (2003) Int. J. chem. Kinet. 35 231

    Google Scholar 

  • E. Meeks J. W. Shon (1995) IEEE Trans. Plasma Sci. 23 539

    Google Scholar 

  • R. J. Kee F. M. Rupley E. Meeks J. A. Miller (1996) Sandia Nat. Lab. Report SAND 96 8216

    Google Scholar 

  • R. J. Kee, F. M. Rupley, J. A. Miller, M. E. Coltrin, J. F. Grcar, E. Meeks, H. K. Moffat, A. E. Lutz, G. Dixon-Lewis, M. D. Smooke, J. Warnatz, G. H. Evans,R. S. Larson, R. E. Mitchell, L. R. Petzold, W. C. Reynolds, M. Caracotsios, W. E. Stewart, P. Glarborg, C.Wang, and O. Adigun, Chemkin Collection, Release 3.6, Reaction Design, Inc., San Diego, CA, 2000

  • M. K. Kiehlbauch D. B. Graves (2003) J. Vac. Sci. Technol. A 21 660

    Google Scholar 

  • V. Puech L. Torchin (1986) J. Phys. D 19 2309

    Google Scholar 

  • D. Margreiter H. Deutsch T. D. Mark (1990) Contrib. Plasma Phys 4 487

    Google Scholar 

  • A. I. Y. Itikawa K. Onda K. Sakimoto K. Takayanagi Y. Hatano M. Hayashi H. Nishimura S. Tsurubuchi (1989) J. Phys. Chem. Ref. Data 18 23

    Google Scholar 

  • Y. Itikawa A. Ichimura (1990) J. Phys. Chem. Ref.Data 19 637

    Google Scholar 

  • P. C. Cosby (1993) J. Chem. Phys 54 9560

    Google Scholar 

  • M. E. Coltrin, R. J. Kee, F. M. Rupley, and E. Meeks: Sandia National Laboratories Report SAND96-8217 (1996).

  • D. Bohm, in The Characteristics of Electrical Discharges in Magnetic Fields, A. Guthrie and R. K. Wakerling, eds. McGraw Hill, New York, 1949.

  • M. A Lieberman A. J. Lichtenberg (1994) Principles of Plasma Discharges and Materials Processing Wiley New York

    Google Scholar 

  • J. E. Heidenreich J. R. Paraszczak M. Moisan G. Sauve (1988) J. Vac. Sci. Technol. B 6 288

    Google Scholar 

  • C. Lee D. B. Graves M. A. Lieberman D. W. Hess (1994) J. Electrochem. Soc 141 1546

    Google Scholar 

  • R. L. Jackson (1992) J. Chem. Phys 96 5938

    Google Scholar 

  • R. L. Jackson (1989) Chem. Phys. Lett 163 315

    Google Scholar 

  • W. J. James P.-L. Tseng (1985) J. Vac. Sci. Technol. A 3 2634

    Google Scholar 

  • R. K. Janev W. D. Langer K Evans D.E. Post (1987) Elementary Processes in Hydrogen Helium Plasmas Springer-Verlag New York

    Google Scholar 

  • I. R. Slagle D. Sarzynski D. Gutman J. A. Miller C. F. Melius (1988) J. Chem. Soc., Faraday Trans 84 491

    Google Scholar 

  • G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, Soonho Song, W. C. Gardiner, Jr., V. V. Lissianski, and Z. Qin, in GRI-MECH 3.0, http://www.me.berkeley.edu/gri\_mech/, 2000.

  • J. A. Miller C. F. Melius (1992) Combust. Flame 91 21

    Google Scholar 

  • B. W. Wu S. L. Girshick (1994) J. Appl. Phys 75 3914

    Google Scholar 

  • S. M. Han E. S. Aydil (1996) J. Vac. Sci. Technol. A 14 2062

    Google Scholar 

  • D. Pagnon J. Amorim J. Nahorny M. Touzeau M. Vialle (1995) J. Phys. D: Appl. Phys 28 1856

    Google Scholar 

  • H. Singh J. W. Coburn D. B. Graves (2000) J. Appl. Phys 88 3748

    Google Scholar 

  • B.-O. Cho J. Wang L. Sha J. P. Chang (2000) Appl. Phys. Lett 80 1052

    Google Scholar 

  • H. M. Katsch A. Tewes E. Quandt A. Goehlich T. Kawetzki H. F. Döbele (2000) J. Appl. Phys. 88 6232

    Google Scholar 

  • R. D. Anderson H. A. Taylor (1952) J. Phys. Chem 56 498

    Google Scholar 

  • M. G. Jacko S. J. W. Price (1990) Can. J. Chem. 42 1198

    Google Scholar 

  • S. H. Li C. A. Larsen G. B. Stringfellow (1990) J.Crystal. Growth 102 117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Wolden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolden, C.A. The Role of Oxygen Dissociation in Plasma Enhanced Chemical Vapor Deposition of Zinc Oxide from Oxygen and Diethyl Zinc. Plasma Chem Plasma Process 25, 169–192 (2005). https://doi.org/10.1007/s11090-004-8841-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-8841-6

Keywords

Navigation