Skip to main content
Log in

A Statistical Mechanical View of the Determination of the Composition of Multi‐Temperature Plasmas

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

It is important that plasma composition is calculated in a manner consistent with statistical mechanics, particularly since the Boltzmann equation is the basis from which transport coefficients and the fluid‐dynamic equations are derived. It is shown from statistical mechanical considerations based on the Boltzmann equation and the H‐theorem that it is (i) not possible for a plasma to have more than one temperature in equilibrium in the absence of external forces and gradients, and (ii) not possible to draw conclusions about the change in entropy of a plasma in the presence of external forces and gradients. Derivations of the two‐temperature Saha equation, and more generally calculations of the composition of a multi‐temperature plasma, that are based on entropy maximization are therefore invalid. A thermodynamic derivation of the composition of a multi‐temperature plasma that is consistent with the statistical mechanical results is presented. The derivation shows that the equilibrium composition of a plasma can be correctly calculated by minimization of the internal or free energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, Vol. 1, Plenum, New York (1994), pp. 151–169, 252–257.

    Google Scholar 

  • 2. C. A. Destefani, A. B. Murphy, E. Siores, and M.-F. Elchinger, J. Phys. D: Appl. Phys. 33, 1996 (2000).

    Google Scholar 

  • 3. J. Haidar, J. Phys. D: Appl. Phys. 32, 263 (1999).

    Google Scholar 

  • 4. S. C. Snyder, L. D. Reynolds, J. R. Fincke, G. D. Lassahn, J. D. Grandy, and T. E. Repetti, Phys. Rev. E 50, 519 (1994).

    Google Scholar 

  • 5. I. Prigogine, Bulletin de la Classe des Sciences, Académie Royale Belgique 26, 53 (1940).

    Google Scholar 

  • 6. A. V. Potapov, High Temp. 4, 48 (1966).

    Google Scholar 

  • 7. A. R. Hochstim, Kinetic Processes in Gases and Plasmas, Academic, New York (1969), p. 304.

    Google Scholar 

  • 8. M. Mitchner and C. H. Kruger, Partially Ionized Gases, Wiley, New York (1973), pp. 37–47, 433–457.

    Google Scholar 

  • 9. E. Richley and D. Tuma, J. Appl. Phys. 53, 8537 (1982).

    Google Scholar 

  • 10. A. Morro and M. Romeo, J. Plasma Phys. 39, 41 (1988).

    Google Scholar 

  • 11. M. C. M. van de Sanden, P. P. J. M. Schram, A. G. Peeters, J. A. M. van der Mullen, and G. M. W. Kroesen, Phys. Rev. A 40, 5273 (1989).

    Google Scholar 

  • 12. X. Chen and P. Han, J. Phys. D: Appl. Phys. 32, 1711 (1999).

    Google Scholar 

  • 13. D. Giordano, Phys. Rev. E 58, 3098 (1998).

    Google Scholar 

  • 14. D. Giordano and M. Capitelli, J. Thermophys. 9, 803 (1995).

    Google Scholar 

  • 15. D. Giordano and M. Capitelli, Phys. Rev. E 65, 016401 (2001).

    Google Scholar 

  • 16. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.

    Google Scholar 

  • 17. S. Chapman and T. G. Cowling, The Mathematical Theory of Non Uniform Gases, Cambridge University Press, Cambridge, UK, 1939.

    Google Scholar 

  • 18. D. ter Harr, Elements of Statistical Mechanics, Rinehart, New York, 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andre, P., Aubreton, J., Elchinger, M. et al. A Statistical Mechanical View of the Determination of the Composition of Multi‐Temperature Plasmas. Plasma Chem Plasma Process 24, 435–446 (2004). https://doi.org/10.1007/s11090-004-2278-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-004-2278-9

Keywords

Navigation