Skip to main content
Log in

Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °C

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Refractory high-entropy alloys (RHEA) are considered as potential candidates for new-generation energy-related high-temperature applications. However, the poor high-temperature oxidation resistance of RHEAs, resulting in phenomena such as significant weight gain, scale spallation, pesting, and even complete oxidation, limits their applications. In this study, the oxidation behavior of AlxHfNbTiVY0.05 (x = 0.75; 1; 1.25) high-entropy alloys was investigated at 700–900 °C. The isothermal oxidation tests showed that the oxidation resistance of AlxHfNbTiVY0.05 RHEA is strongly influenced by temperature and time. In addition, accelerated oxidation, known as pesting, was observed to occur at 700 °C for all alloys; while, partial spallation was observed at 800 °C for the Al1 and Al1.25 alloys. Detailed analyses of oxidation kinetics have been carried out for the oxidation test series at 900 °C. The mechanism behind disintegration was investigated and attributed to accelerated internal oxidation followed by the formation of voluminous Nb2O5, TiNb2O7, and fast-growing AlNbO4, and is also thought to be related to the partial evaporation of V2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. O. N. Senkov, S. V. Senkova, D. M. Dimiduk, C. Woodward, and D. B. Miracle, Journal of Materials Science 47, 6522 (2012). https://doi.org/10.1007/s10853-012-6582-0.

    Article  CAS  Google Scholar 

  2. T. M. Pollock and S. Tin, Journal of Propulsion and Power 22, 361 (2006). https://doi.org/10.2514/1.18239.

    Article  CAS  Google Scholar 

  3. Y. Yan, K. A. McGarrity, D. J. Delia, C. Fekety, and K. Wang, Corrosion Science 204, 110377 (2022). https://doi.org/10.1016/j.corsci.2022.110377.

    Article  CAS  Google Scholar 

  4. R. A. MacKay, T. P. Gabb, J. L. Smialek, and M. V. Nathal, Alloy Design Challenge : Development of Low Density Superalloys for Turbine Blade Applications. (NASA TM 2009-215819, 2009), p. 1.

  5. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., Advanced Engineering Materials 6, 299 (2004). https://doi.org/10.1002/adem.200300567.

    Article  CAS  Google Scholar 

  6. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, Materials Science and Engineering A 375–377, 213 (2004). https://doi.org/10.1016/j.msea.2003.10.257.

    Article  CAS  Google Scholar 

  7. O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, Intermetallics 19, 698 (2011). https://doi.org/10.1016/j.intermet.2011.01.004.

    Article  CAS  Google Scholar 

  8. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, and C. F. Woodward, Journal of Alloys and Compounds 509, 6043 (2011). https://doi.org/10.1016/j.jallcom.2011.02.171.

    Article  CAS  Google Scholar 

  9. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, and P. K. Liaw, Intermetallics 18, 1758 (2010). https://doi.org/10.1016/j.intermet.2010.05.014.

    Article  CAS  Google Scholar 

  10. O. N. Senkov and C. F. Woodward, Materials Science and Engineering A 529, 311 (2011). https://doi.org/10.1016/j.msea.2011.09.033.

    Article  CAS  Google Scholar 

  11. O. N. Senkov, S. V. Senkova, D. B. Miracle, and C. Woodward, Materials Science and Engineering A 565, 51 (2013). https://doi.org/10.1016/j.msea.2012.12.018.

    Article  CAS  Google Scholar 

  12. Z. Lei, X. Liu, Y. Wu, H. Wang, S. Jiang, S. Wang, et al., Nature 563, 546 (2018). https://doi.org/10.1038/s41586-018-0685-y.

    Article  CAS  PubMed  Google Scholar 

  13. S. Wei, S. J. Kim, J. Kang, Y. Zhang, Y. Zhang, T. Furuhara, et al., Nature Materials 19, 1175 (2020). https://doi.org/10.1038/s41563-020-0750-4.

    Article  CAS  PubMed  Google Scholar 

  14. B. Gorr, S. Schellert, F. Müller, H. J. Christ, A. Kauffmann, and M. Heilmaier, Advanced Engineering Materials (2021). https://doi.org/10.1002/adem.202001047.

    Article  Google Scholar 

  15. B. Gorr, F. Müller, M. Azim, H. J. Christ, T. Müller, H. Chen, et al., Oxidation of Metals 88, 339 (2017). https://doi.org/10.1007/s11085-016-9696-y.

    Article  CAS  Google Scholar 

  16. T. M. Butler and K. J. Chaput, Journal of Alloys and Compounds 787, 606 (2019). https://doi.org/10.1016/j.jallcom.2019.02.128.

    Article  CAS  Google Scholar 

  17. O. A. Waseem, U. Auyeskhan, H. M. Lee, and H. J. Ryu, Journal of Materials Research 33, 3226 (2018). https://doi.org/10.1557/jmr.2018.241.

    Article  CAS  Google Scholar 

  18. K. C. Lo, H. Murakami, J. W. Yeh, and A. C. Yeh, Intermetallics 119, 106711 (2020). https://doi.org/10.1016/j.intermet.2020.106711.

    Article  CAS  Google Scholar 

  19. C. M. Liu, H. M. Wang, S. Q. Zhang, H. B. Tang, and A. L. Zhang, Journal of Alloys and Compounds 583, 162 (2014). https://doi.org/10.1016/j.jallcom.2013.08.102.

    Article  CAS  Google Scholar 

  20. T. Maruyama and K. Yanagihara, Materials Science and Engineering A 239–240, 828 (1997). https://doi.org/10.1016/s0921-5093(97)00673-4.

    Article  Google Scholar 

  21. S. Sheikh, M. K. Bijaksana, A. Motallebzadeh, S. Shafeie, A. Lozinko, L. Gan, et al., Intermetallics 97, 58 (2018). https://doi.org/10.1016/j.intermet.2018.04.001.

    Article  CAS  Google Scholar 

  22. C. H. Chang, M. S. Titus, and J. W. Yeh, Advanced Engineering Materials 20, 1 (2018). https://doi.org/10.1002/adem.201700948.

    Article  CAS  Google Scholar 

  23. D. Ouyang, Z. Chen, H. Yu, K. C. Chan, and L. Liu, Corrosion Science 198, 110153 (2022). https://doi.org/10.1016/j.corsci.2022.110153.

    Article  CAS  Google Scholar 

  24. F. Muhammad, E. A. Basuki, A. A. Korda, Z. Zulhan, and D. H. Prajitno, Journal of Non-Crystalline Solids 613, 122392 (2023). https://doi.org/10.1016/j.jnoncrysol.2023.122392.

    Article  CAS  Google Scholar 

  25. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, A. E. Gheribi, et al., Calphad 54, 35 (2016). https://doi.org/10.1016/j.calphad.2016.05.002.

    Article  CAS  Google Scholar 

  26. O. N. Senkov, D. B. Miracle, K. J. Chaput, and J. P. Couzinie, Journal of Materials Research 33, 3092 (2018). https://doi.org/10.1557/jmr.2018.153.

    Article  CAS  Google Scholar 

  27. Y. K. Mu, Y. D. Jia, L. Xu, Y. F. Jia, X. H. Tan, J. Yi, et al., Materials Research Letters 7, 312 (2019). https://doi.org/10.1080/21663831.2019.1604443.

    Article  CAS  Google Scholar 

  28. M. K. Meyer and M. Akinc, Journal of the American Ceramic Society 79, 938 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08528.x.

    Article  CAS  Google Scholar 

  29. V. K. Tolpygo and H. J. Grabke, Scripta Metallurgica et Materiala 28, 747 (1993). https://doi.org/10.1016/0956-716X(93)90047-V.

    Article  CAS  Google Scholar 

  30. T. C. Chou and T. G. Nieh, Journal of Materials Research 8, 214 (1993). https://doi.org/10.1557/JMR.1993.0214.

    Article  CAS  Google Scholar 

  31. J. H. Westbrook and D. L. Wood, Journal of Nuclear Materials 12, 208 (1964). https://doi.org/10.1016/0022-3115(64)90142-4.

    Article  CAS  Google Scholar 

  32. P. J. Meschter, Metallurgical Transactions A 23, 1763 (1992). https://doi.org/10.1007/BF02804369.

    Article  Google Scholar 

  33. C. G. McKamey, P. F. Tortorelli, J. H. DeVan, and C. A. Carmichael, Journal of Materials Research 7, 2747 (1992). https://doi.org/10.1557/JMR.1992.2747.

    Article  CAS  Google Scholar 

  34. D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, and G. H. Meier, Materials Science and Engineering: A 155, 165 (1992). https://doi.org/10.1016/0921-5093(92)90324-T.

    Article  Google Scholar 

  35. G. Mi, K. Yao, P. Bai, C. Cheng, and X. Min, Metals (Basel) 7, 226 (2017). https://doi.org/10.3390/met7060226.

    Article  CAS  Google Scholar 

  36. M. Esmaily, Y. Qiu, S. Bigdeli, M. B. Venkataraman, A. Allanore, and N. Birbilis, npj Materials Degradation 4, 25 (2020). https://doi.org/10.1038/s41529-020-00129-2.

    Article  CAS  Google Scholar 

  37. N. Yurchenko, E. Panina, S. Zherebtsov, G. Salishchev, and N. Stepanov, Oxidation Materials 11, 2526 (2018). https://doi.org/10.3390/ma11122526.

    Article  CAS  PubMed  Google Scholar 

  38. A. S. Gandhi and C. G. Levi, Journal of Materials Research 20, 1017 (2005). https://doi.org/10.1557/JMR.2005.0133.

    Article  CAS  Google Scholar 

  39. H. Jiang, M. Hirohasi, Y. Lu, and H. Imanari, Scripta Materialia 46, 639 (2002). https://doi.org/10.1016/S1359-6462(02)00042-8.

    Article  CAS  Google Scholar 

  40. C. Leyens, Journal of Materials Engineering and Performance 10, 225 (2001). https://doi.org/10.1361/105994901770345259.

    Article  CAS  Google Scholar 

  41. A. Ralison, F. Dettenwanger, and M. Schütze, Materials and Corrosion 51, 317 (2000). https://doi.org/10.1002/(SICI)1521-4176(200005)51:5%3c317::AID-MACO317%3e3.0.CO;2-W.

    Article  CAS  Google Scholar 

  42. S. C. Parida, N. K. Gupta, K. Krishnan, G. A. Rama Rao, and B. K. Sen, Metallurgical and Materials Transactions A 39, 2020 (2008). https://doi.org/10.1007/s11661-008-9548-8.

    Article  CAS  Google Scholar 

  43. V. Gauthier, C. Josse, J. P. Larpin, and M. Vilasi, Oxidation of Metals 54, 27 (2000). https://doi.org/10.1023/a:1004694327812.

    Article  CAS  Google Scholar 

  44. P. Pérez, V. A. C. Haanappel, and M. F. Stroosnijder, Materials Science and Engineering: A 284, 126 (2000). https://doi.org/10.1016/S0921-5093(00)00754-1.

    Article  Google Scholar 

  45. Y. Ogawa and E. Miura-Fujiwara, Materials Transactions 60, 2204 (2019). https://doi.org/10.2320/matertrans.MT-M2019136.

    Article  CAS  Google Scholar 

  46. C. Liu, P. Luo, Y. Feng, W. Gong, and F. Zhang, Ceramics International 49, 30471 (2023). https://doi.org/10.1016/j.ceramint.2023.06.311.

    Article  CAS  Google Scholar 

  47. R. S. Roth, Progress in Solid State Chemistry 13, 159 (1980). https://doi.org/10.1016/0079-6786(80)90003-5.

    Article  CAS  Google Scholar 

  48. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed (Cambridge University Press, Cambridge, 2006), https://doi.org/10.1017/CBO9781139163903.

    Book  Google Scholar 

  49. E. M. Savitskii and G. S. Burkhanov, Physical Metallurgy of Refractory Metals and Alloys, (Springer US, 1995). https://doi.org/10.1007/978-1-4684-1572-8.

    Book  Google Scholar 

  50. K. T. Jacob, C. Shekhar, M. Vinay, and Y. Waseda, Journal of Chemical and Engineering Data 55, 4854 (2010). https://doi.org/10.1021/je1004609.

    Article  CAS  Google Scholar 

  51. P. M. Woodward, P. Karen, J. S. O. Evans, and T. Vogt, Solid State Materials Chemistry, (Cambridge University Press, 2021). https://doi.org/10.1017/9781139025348.

    Book  Google Scholar 

  52. P. Stone, R. A. Bennett, and M. Bowkery, New Journal of Physics 1999. https://doi.org/10.1088/1367-2630/1/1/008.

    Article  Google Scholar 

  53. B. Voglewede, V. R. Rangel, and S. K. Varma, Corrosion Science 61, 123 (2012). https://doi.org/10.1016/j.corsci.2012.04.029.

    Article  CAS  Google Scholar 

  54. L. Korb and D. Olson, ASM Metals Handbook: Corrosion, vol. 13. (ASM international, 1992),.

    Google Scholar 

  55. G. Geramifard, C. Gombola, P. Franke, and H. J. Seifert, Corrosion Science 177, 108956 (2020). https://doi.org/10.1016/j.corsci.2020.108956.

    Article  CAS  Google Scholar 

  56. B. A. Pint, K. L. More, and I. G. Wright, Oxidation of Metals 59, 257 (2003). https://doi.org/10.1023/A:1023087926788.

    Article  CAS  Google Scholar 

  57. B. A. Pint, Journal of the American Ceramic Society 86, 686 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03358.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the ITB International Research Program 2022, grant no. LPPM.PN-10-34-2022 is gratefully acknowledged. A part of this work was carried out at the Thermodynamics and Modelling Research Group of the Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University. This work utilized the Academy of Finland’s RawMatTERS Finland Infrastructure (RAMI) based at Aalto University, GTK Espoo, and VTT Espoo.

Author information

Authors and Affiliations

Authors

Contributions

F.M. contributed to conceptualization, investigation, methodology, software, data curation, writing—original draft and editing. D.S. contributed to methodology, validation, and writing—review. L.K. contributed to methodology, validation, writing—review and editing. D.S. was involved in methodology, validation, writing—review and editing. E.A.B contributed to methodology, supervision, validation, funding acquisition, and writing—review. D.L. contributed to methodology, software, supervision, validation, and writing—review. P.T. contributed to methodology, supervision, validation, writing—review and editing. All other authors reviewed the manuscript.

Corresponding author

Correspondence to Fadhli Muhammad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, F., Sukhomlinov, D., Klemettinen, L. et al. Oxidation Behavior of AlxHfNbTiVY0.05 Refractory High-Entropy Alloys at 700–900 °C. High Temperature Corrosion of mater. (2024). https://doi.org/10.1007/s11085-024-10243-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11085-024-10243-0

Keywords

Navigation