Skip to main content
Log in

Comparative Study of FeCrAlY and Sapphire Hot Corrosion by Mixed Oxide and Sulfate Deposits

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Alloys and oxidation-resistant coatings utilized in high-temperature applications can be degraded by aerosols that deposit onto surfaces during operation. Understanding how the deposit composition influences the hot corrosion mechanisms is essential to develop more durable materials. This work advances the understanding of the effect of complex oxide and sulfate deposits on the degradation of an alumina-forming FeCrAlY alloy in comparison to reactions with single-crystal sapphire. The deposit compositions were developed to systematically understand the effect of anion makeup (mixed oxides, oxide–sulfate, and sulfates) and the effect of adding Na and K salts. CaSO4 was used as a control. The mixed oxide and oxide–sulfate deposits increased the frequency of thermally grown oxide (TGO) intrusions in FeCrAlY but did not produce a noticeable change in the sapphire. Pure CaSO4 and mixed sulfate reacted with the TGO and sapphire to form calcium aluminates and led to roughening of the specimen–reaction product interface. The primary difference between the CaSO4 and mixed sulfate deposits was the increased uniformity of the attack by the latter due to its tendency to melt and spread. Comparison between the change in the degradation features in the presence of CaSO4 and mixed sulfate deposits on both types of specimens expands the current understanding of sulfate-based hot corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Marcus, Corrosion science. 36, 1994 (2155).

    Article  CAS  Google Scholar 

  2. B. Gleeson, Shreir’s corrosion. 182, (2010)

  3. J. A. Goebel and F. S. Pettit, Metallurgical Transactions. 1, 1970 (3421).

    Article  CAS  Google Scholar 

  4. J. A. Goebel, F. S. Pettit, and G. W. Goward, Metall Mater Trans B. 4, 1973 (261).

    Article  CAS  Google Scholar 

  5. G. W. Goward, Journal of Engineering for Gas Turbines and Power. 108, 1986 (421).

    Article  CAS  Google Scholar 

  6. N. Eliaz, G. Shemesh, and R. M. Latanision, Engineering Failure Analysis. 9, 2002 (31).

    Article  CAS  Google Scholar 

  7. J. Stringer, Annual Review of Materials Science. 7, 1977 (477).

    Article  CAS  Google Scholar 

  8. R. A. Rapp, Corrosion Science. 44, 2002 (209).

    Article  CAS  Google Scholar 

  9. K. L. Luthra, Reaction mechanism. Metallurgical Transactions A. 13, 1982 (1853).

    Article  CAS  Google Scholar 

  10. K. L. Luthra and D. A. Shores, Journal of the Electrochemical Society. 127, 1980 (2202).

    Article  CAS  Google Scholar 

  11. R. L. Jones, Cobalt oxide-SO2/SO3 reactions in cobalt-sodium mixed sulfate formation and low temperature hot corrosion. in: High temperature corrosion. Proceedings of the International Conference, San Diego, CA, March 2–6, 1981. 1983.

  12. K. Y. Jung, F. S. Pettit, and G. H. Meier, The effect of Ca-rich deposits on the high temperature degradation of coated and uncoated superalloys. in: Materials Science Forum. Trans Tech Publ; 2008.595:805–812.

  13. T. Gheno, G. H. Meier, and B. Gleeson, Oxidation of Metals 84, 2015 (185).

    Article  CAS  Google Scholar 

  14. M. B. Krisak, B. I. Bentley, A. W. Phelps, and T. C. Radsick, Journal of Propulsion and Power. 33, 2017 (697).

    Article  CAS  Google Scholar 

  15. P. Brennan, Environmental Factors Affecting CaO-and CaSO4-Induced Degradation of Second-Generation Nickel-Based Superalloys. University of Pittsburgh; 2020.

  16. M. Kovalchuk, and B. Gleeson, Laboratory-Scale Replication of Deposit-Induced Degradation of High-Temperature Turbine Components. in: Superalloys 2020, eds. S. Tin, M. Hardy, J. Clews, et al. (Springer International Publishing; Cham, 2020). pp. 789–797. doi:https://doi.org/10.1007/978-3-030-51834-9_77.

  17. A. S. Chikhalikar, E. P. Godbole, D. L. Poerschke Corrosion Science. 110892. (2022) doi:https://doi.org/10.1016/j.corsci.2022.110892

  18. D. A. Shifler, The Increasing Complexity of Hot Corrosion. In: American Society of Mechanical Engineers Digital Collection; 2017. doi:https://doi.org/10.1115/GT2017-65281

  19. D. A. Shifler, and S. R., Choi, CMAS Effects on Ship Gas-Turbine Components/Materials. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection; (2018)

  20. D. A. Shifler, Materials at High Temperatures. 35, 2018 (225).

    Article  CAS  Google Scholar 

  21. K. J.Meisner, E. J. Opila, Oxid Met. 2020; doi:https://doi.org/10.1007/s11085-020-09990-7.

  22. J. L. Smialek, F. A. Archer, and R. G. Garlick, JOM 46, 1994 (39).

    Article  CAS  Google Scholar 

  23. T. Gheno and B. Gleeson, Oxidation of Metals. 87, 2017 (249).

    Article  CAS  Google Scholar 

  24. T. Gheno and B. Gleeson, Oxidation of Metals 86, 2016 (385).

    Article  CAS  Google Scholar 

  25. D. L. Poerschke, R. W. Jackson, and C. G. Levi, Annual Review of Materials Research. 47, 2017 (297).

    Article  CAS  Google Scholar 

  26. C. G. Levi, J. W. Hutchinson, M.-H. Vidal-Sétif, and C. A. Johnson, MRS bulletin. 37, 2012 (932).

    Article  CAS  Google Scholar 

  27. A. R. Ericks, F. W. Zok, D. L. Poerschke, and C. G. Levi, Journal of the American Ceramic Society. 105, 2022 (3665).

    Article  CAS  Google Scholar 

  28. G. H. Meier, Oxidation of Metals 98, 2022 (1).

    Article  CAS  Google Scholar 

  29. A. S. Chikhalikar, E. P. Godbole, and D. L. Poerschke, Acta Materialia 237, 2022 (118184).

  30. P. T. Brennan, D. Konitzer, and M. Brennan, B Gleeson, Oxidation of Metals. 1 (2022)

  31. W. D. Summers, D. L. Poerschke, D. Park, J. H. Shaw, F. W. Zok, and C. G. Levi, Acta Materialia 160, 2018 (34).

    Article  CAS  Google Scholar 

  32. W. D. Summers, D. L. Poerschke, A. A. Taylor, A. R. Ericks, C. G. Levi, and F. W. Zok, Journal of the American Ceramic Society 103, 2020 (2919).

    Article  CAS  Google Scholar 

  33. D. W. Green and R. H. Perry, Perry’s chemical engineers’ handbook. (McGraw-Hill Education; 2008)

  34. N. Kanari, N.-E. Menad, E. Ostrosi, et al., Metals. 8, 2018 (1084).

    Article  CAS  Google Scholar 

  35. P. G. Coombs and Z. A. Munir, Journal of thermal analysis. 35, 1989 (967).

    Article  CAS  Google Scholar 

  36. V. K. Tolpygo and D. R. Clarke, Surface and Coatings Technology. 120–121, 1999 (1).

    Article  Google Scholar 

  37. V. K. Tolpygo and D. R. Clarke, Materials at High Temperatures. 17, 2000 (59).

    Article  CAS  Google Scholar 

  38. E. M. Levin, C. R. Robbins and H. F. McMurdie. Phase Diagrams for Ceramists. 181, (1964)

  39. B. Hallstedl, Journal of the American ceramic society. 73, 1990 (15).

    Article  Google Scholar 

  40. H. Du, Journal of phase equilibria. 21, 2000 (6).

    Article  CAS  Google Scholar 

  41. D. Freyer, W. Voigt, and K. Köhnke, European Journal of Solid State and Inorganic Chemistry. 35, 1998 (595).

    Article  CAS  Google Scholar 

  42. M. N. Scheidema and P. Taskinen, Industrial & engineering chemistry research. 50, 2011 (9550).

    Article  CAS  Google Scholar 

  43. A. Dimyati, H. J. Penkalla, P. Untoro, D. Naumenko, W. J. Quadakkers, and J. Mayer, International Journal of Materials Research. 94, 2022 (180).

    Google Scholar 

  44. T. Sand, A. Edgren, C. Geers, et al., Oxidation of Metals 95, 2021 (221).

    Article  CAS  Google Scholar 

  45. B. A. Pint, Journal of the American Ceramic Society. 86, 2003 (686).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. Pin Lu, Changning Niu, and Jiadong Gong (QuesTek Innovations LLC) for the insightful discussions, and to Dr. Eeshani Godbole for assistance preparing the deposit powders.

Funding

This research was supported by the Office of Naval Research (Award number N68335-20-C-0472 monitored by Dr. David Shifler) in collaboration with QuesTek Innovations LLC. Part of this work was carried out in the Characterization Facility, College of Science and Engineering, University of Minnesota, which receives support from the National Science Foundation through the MRSEC (Award Number DMR-2011401) and the NNCI (Award Number ECCS-2025124) programs.

Author information

Authors and Affiliations

Authors

Contributions

Both authors designed the study. AC performed the experiments, characterization, and initial data analysis, prepared the figures, and wrote the first draft of the manuscript. DP contributed to data interpretation and edited the figures and manuscript. Both authors reviewed the final manuscript.

Corresponding author

Correspondence to David L. Poerschke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1728 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhalikar, A.S., Poerschke, D.L. Comparative Study of FeCrAlY and Sapphire Hot Corrosion by Mixed Oxide and Sulfate Deposits. High Temperature Corrosion of mater. 100, 321–344 (2023). https://doi.org/10.1007/s11085-023-10182-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10182-2

Keywords

Navigation