Skip to main content
Log in

High-Temperature Cyclic Oxidation of Single and Dual-Layer CSZ: ZrO2-25 wt% CeO2-2.5 wt% Y2O3/MAC: MoSi2 + Al2O3 + CSZ Self-healing TBCs at 1100 °C

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

High-temperature oxidation has been regarded as a major challenge in the degradation of thermal barrier coatings (TBCs). The present study introduces a new TBC (CSZ: ZrO2-25 wt% CeO2-2.5 wt% Y2O3/MAC: MoSi2 + Al2O3 + CSZ) with enhanced resistance to high-temperature oxidation compared to the conventional CSZ TBC. Conventional single-layer CSZ TBC and dual-layer CSZ/MAC self-healing TBC were deposited using an atmospheric plasma spray (APS) technique on IN738LC substrates with a NiCrAlY bond coat. The high-temperature cyclic oxidation testing was performed in air at 1100 °C with 4 h in each cycle. Phase and microstructural investigations of the coatings by XRD and FESEM/EDS methods before and after the high-temperature cyclic oxidation testing indicated the better performance of CSZ/MAC self-healing TBC (relative to conventional CSZ TBC) in preventing the diffusion of oxygen. The microstructural analysis indicated that the growth rate of TGO layer was considerably slower for dual-layer CSZ/MAC self-healing TBC due to reduced oxygen infiltration and crack propagation and, therefore, has a better high-temperature performance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. J. G. Thakare, C. Pandey, M. Mahapatra, and R. Mulik, Metals and Materials International 27, (7), 2021 (1947–1968).

    Article  Google Scholar 

  2. A. Keyvani, M. Bahamirian, and A. Kobayashi, Journal of Alloys and Compounds 727, 2017 (1057–1066).

    Article  CAS  Google Scholar 

  3. A. Keyvani and M. Bahamirian, Surface Engineering 33, (6), 2017 (433–443).

    Article  CAS  Google Scholar 

  4. A. Keyvani and M. Bahamirian, Materials Research Express 3, (10), 2016 105047.

    Article  Google Scholar 

  5. G. Mehboob, M.-J. Liu, T. Xu, S. Hussain, G. Mehboob, and A. Tahir, Ceramics International 46, (7), 2020 (8497–8521).

    Article  CAS  Google Scholar 

  6. R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stöver, Surface and Coatings Technology 205, (4), 2010 (938–942).

    Article  Google Scholar 

  7. M. Bahamirian, A. Bastani, S. Hasani, M. Farvizi, and A. Seifoddini, Ceramics International 49, (11A), 2023 (16717–16731).

    Article  CAS  Google Scholar 

  8. K. M. Doleker, A. C. Karaoglanli, Y. Ozgurluk, and A. Kobayashi, Vacuum 177, 2020 109401.

    Article  CAS  Google Scholar 

  9. M. Bahamirian, S. Hadavi, M. Farvizi, A. Keyvani, and M. Rahimipour, Oxidation of Metals 92, (5), 2019 (401–421).

    Article  CAS  Google Scholar 

  10. M. Bahamirian, S. Hadavi, M. Farvizi, M. Rahimipour, and A. Keyvani, Ceramics International 45, (6), 2019 (7344–7350).

    Article  CAS  Google Scholar 

  11. M. Bahamirian, S. Hadavi, M. Farvizi, A. Keyvani, and M. Rahimipour, Journal of Materials Engineering and Performance 29, (11), 2020 (7080–7093).

    Article  CAS  Google Scholar 

  12. A. C. Karaoglanli, K. M. Doleker, and Y. Ozgurluk, Materials Characterization 159, 2020 110072.

    Article  CAS  Google Scholar 

  13. X. Cao, R. Vassen, and D. Stöver, Journal of the European Ceramic Society 24, (1), 2004 (1–10).

    Article  CAS  Google Scholar 

  14. K. M. Doleker, Y. Ozgurluk, H. Ahlatci, and A. C. Karaoglanli, Surface and Coatings Technology 371, 2019 (262–275).

    Article  CAS  Google Scholar 

  15. K. M. Doleker, O. Odabas, Y. Ozgurluk, H. Askerov, and A. C. Karaoglanli, Materials Research Express 6, (8), 2019 086456.

    Article  CAS  Google Scholar 

  16. W.-W. Zhang, G.-R. Li, Q. Zhang, G.-J. Yang, G.-W. Zhang, and H.-M. Mu, Journal of Thermal Spray Technology 27, 2018 (1064–1075).

    Article  Google Scholar 

  17. P. Soltani, A. Keyvani, and M. Bahamirian, Ceramics International 48, (7), 2022 (9038–9050).

    Article  CAS  Google Scholar 

  18. F. Nozahic, D. Monceau, and C. Estournès, Materials and Design 94, 2016 (444–448).

    Article  CAS  Google Scholar 

  19. D. Koch, D. E. Mack, and R. Vaßen, Surface and Coatings Technology 437, 2022 128353.

    Article  CAS  Google Scholar 

  20. M. Peters, B. Saruhan-Brings, and U. Schulz, in Proceedings of CEAS 2009 European Air and Space Conference (2009), p. 1–9.

  21. T. Ouyang and J. Suo, Surface and Coatings Technology 412, 2021 127065.

    Article  CAS  Google Scholar 

  22. T. Ouyang, et al., Surface and Coatings Technology 286, 2016 (365–375).

    Article  CAS  Google Scholar 

  23. K. M. Doleker, Y. Ozgurluk, and A. C. Karaoglanli, Surface and Coatings Technology 415, 2021 127135.

    Article  CAS  Google Scholar 

  24. A. Evans, M. He, and J. Hutchinson, Progress in materials science 46, (3–4), 2001 (249–271).

    Article  CAS  Google Scholar 

  25. W. Chen, X. Wu, B. Marple, and P. Patnaik, Surface and Coatings Technology 201, (3–4), 2006 (1074–1079).

    Article  CAS  Google Scholar 

  26. Y.-F. Zheng and B. Fu, Geochemical Journal 32, (2), 1998 (71–89).

    Article  CAS  Google Scholar 

  27. B. Zhang and X. Wu, Journal of Asian Earth Sciences 42, (1–2), 2011 (134–141).

    Article  Google Scholar 

  28. F. Nozahic, C. Estournès, A. L. Carabat, W. G. Sloof, S. van Der Zwaag, and D. Monceau, Materials and Design 143, 2018 (204–213).

    Article  CAS  Google Scholar 

  29. W. Mao, Kinetics of Self-healing Reaction in TBC with MoSi2 Based Sacrificial particles, 2013.

  30. T. Ouyang, et al., Journal of Alloys and Compounds 691, 2017 (811–821).

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

AK was involved in supervision, writing-original draft and conceptualization. PS contributed to investigation and data analysis. MB was involved in review and editing.

Corresponding author

Correspondence to Ahmad Keyvani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keyvani, A., Soltani, P. & Bahamirian, M. High-Temperature Cyclic Oxidation of Single and Dual-Layer CSZ: ZrO2-25 wt% CeO2-2.5 wt% Y2O3/MAC: MoSi2 + Al2O3 + CSZ Self-healing TBCs at 1100 °C. High Temperature Corrosion of mater. 100, 305–320 (2023). https://doi.org/10.1007/s11085-023-10175-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10175-1

Keywords

Navigation