Skip to main content
Log in

Lamellar Spacing Characteristics of Eutectoids in Oxide Scale Formed on Iron After Holding at 300–500℃

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

The eutectoid reaction in FeO scale was examined by thermogravimetric analysis. The oxidized specimens were held isothermally from 100 s to 50,000 s in the temperature range from 300 to 550 ℃. Under a variety of temperature and temporal circumstances, experiments were conducted and the results analyzed using an electron probe micro-analyzer. The findings demonstrate that FeO forms an eutectoid consisting of Fe3O4 and Fe at 300–500 ℃. An experimentally derived TTT diagram of the evolution of the FeO phase change shows eutectoid C-curves with nose temperatures of roughly 425 ℃. The primary factor in the formation of eutectoid product is the local position of Fe supersaturation, which is not directly related to the Fe3O4 seam layer that forms. There exists a “white area” in the front of eutectoid phase transformation before stable eutectoid structure layered formed. Rods of Fe can be formed in eutectoid transformation. The lamellar spacing in the eutectoid product at different temperatures was obtained by calculation and verified by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Y. Cui, H. Wang, X. Y. Gao, G. M. Cao, and Z. Y. Liu, Metallurgical and Materials Transactions A 52, 2021 (4112). https://doi.org/10.1007/s11661-021-06368-5.

    Article  CAS  Google Scholar 

  2. D. J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed (Elsevier, Amsterdam, 2016),.

    Google Scholar 

  3. R. Y. Chen and W. Y. D. Yuen, Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation of Metals. 59, 2003 (433–468). https://doi.org/10.1023/A:1023685905159.

    Article  CAS  Google Scholar 

  4. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals. 56, 2001 (89–118). https://doi.org/10.1023/A:1010395419981.

    Article  CAS  Google Scholar 

  5. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambrige University Press, London, 2006).

    Book  Google Scholar 

  6. M. Zhang and G. Shao, Materials Science and Engineering: A. 452, 2007 (189–193). https://doi.org/10.1016/j.msea.2006.10.151.

    Article  CAS  Google Scholar 

  7. Z. F. Li, G. M. Cao, F. Lin, C. Y. Cui, H. Wang, and Z. Y. Liu, ISIJ International 58, 2018 (2338–2347). https://doi.org/10.2355/isijinternational.ISIJINT-2018-365.

    Article  CAS  Google Scholar 

  8. M. Takeda, H. Kushida, T. Onishi, M. Toyama, F. Koizumi, and S. Fujimoto, Oxidation of Metals. 73, 2010 (1–13). https://doi.org/10.1007/s11085-009-9167-9.

    Article  CAS  Google Scholar 

  9. H. Tanei and Y. Kondo, ISIJ International. 52, 2012 (105–109). https://doi.org/10.2355/isijinternational.52.105.

    Article  CAS  Google Scholar 

  10. T. Matsuhashi, H. Okada, and S. Kiya, Tetsu-to-Hagané. 90, 2004 (487–493). https://doi.org/10.2466/pms.1968.26.3.975.

    Article  CAS  Google Scholar 

  11. S. Hayashi, Y. Yamanouchi, K. Hayashi, Y. Hidaka, and M. Sato, Corrosion Science. 187, 2021 (109482). https://doi.org/10.1016/j.corsci.2021.109482.

    Article  CAS  Google Scholar 

  12. Z. Y. Liu, Y. Yu, X. B. Guo, J. Guan, and G. D. Wang, Steel rolling. 26, 2009 (5–11). https://doi.org/10.3969/j.issn.1003-9996.2009.01.002.

    Article  CAS  Google Scholar 

  13. Z. Y. Liu and G. M. Cao, Studies on Oxidation Behavior of Steels During Hot Rolling and Development and Application of the Scale Control Technologies, (Metallurgical Industry Press, Beijing, 2021).

    Google Scholar 

  14. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals. 53, 2000 (539–560). https://doi.org/10.1023/A:1004637127231.

    Article  CAS  Google Scholar 

  15. S. Hayashi, K. Mizumoto, S. Yoneda, Y. Kondo, H. Tanei, and U. Shigeharu, Oxidation of Metals. 81, 2014 (357–371). https://doi.org/10.1007/s11085-013-9442-7.

    Article  CAS  Google Scholar 

  16. S. Yoneda, S. Hayashi, Y. Kondo, H. Tanei, and S. Ukai, Oxidation of Metals. 87, 2017 (125–138). https://doi.org/10.1007/s11085-016-9661-9.

    Article  CAS  Google Scholar 

  17. S. Hayashi, S. Suzue, Y. Kondo. Yoneda, and H. Tanei, Oxidation of Metals. 94, 2020 (81–93). https://doi.org/10.1007/s11085-020-09979-2.

    Article  CAS  Google Scholar 

  18. C. Juricic, On the Mechanisms of Internal Stress Formation in Multiphase Iron Oxide Scales, (Ruhr University Bochum, Bochum, 2008).

    Google Scholar 

  19. Tomoki Fukagawa, ISIJ International. 34, 1994 (906–911). https://doi.org/10.2355/isijinternational.34.906.

    Article  CAS  Google Scholar 

  20. M. J. Philippe, F. Wanger, F. E. Mellab, and C. Esling, Acta Metalilurgica Et Materialia 42, 1994 (239–250). https://doi.org/10.1016/0956-7151(94)90066-3.

    Article  CAS  Google Scholar 

  21. F. Reichel, L. P. H. Jeurgens, and E. J. Mtttemeujer, Acta Materialia. 56, 2008 (2897–2907). https://doi.org/10.1016/j.actamat.2008.02.031.

    Article  CAS  Google Scholar 

  22. B. M. Gleeson, S. M. M. Hadavi, and D. Young, Materials at High Temperatures. 17, 2000 (311–319). https://doi.org/10.1179/mht.2000.17.2.020.

    Article  CAS  Google Scholar 

  23. Y. Shizukawa, S. Hayashi, S. Yoneda, Y. Kondo, H. Tanei, and U. Shigeharu, Oxidation of Metals. 86, 2016 (315–326). https://doi.org/10.1007/s11085-016-9638-8.

    Article  CAS  Google Scholar 

  24. Z. F. Li, G. M. Cao, F. Li, H. Wang, and Z. Y. Liu, Oxidation of Metals. 90, 2018 (337–354). https://doi.org/10.1007/s11085-018-9854-5.

    Article  CAS  Google Scholar 

  25. S. Garber, Nature 183, 1959 (1387–1388). https://doi.org/10.1038/1831387b0.

    Article  CAS  Google Scholar 

  26. H. A. Wreidt, Journal of Phase Equilibria 12, 1991 (170–220). https://doi.org/10.1007/BF02645713.

    Article  Google Scholar 

  27. X. L. Yu, High temperature iron oxide of metal materials, (Science Press, China, 2019).

    Google Scholar 

  28. I. Barin, Thermochemical Data of Pure Substances, (Wiley-VCH Verlag GmbH, Weinheim, Germany, 1995). https://doi.org/10.1002/9783527619825.

    Book  Google Scholar 

  29. M. Hillert, L. Höglund, and J. Ågren, Acta materialia 51, 2003 (2089–2095).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No.2022YFB3304800), Postdoctoral Science Foundation of China (Grant No.2021M701167, 2022T150205), Science and Technology Special Projects of Liaoning Province, China (Grant No. 2022JH25/10200001), and National Nature Science Foundation of China (Grant No. 52004063).

Author information

Authors and Affiliations

Authors

Contributions

HW contributed to conceptualization, methodology, investigation, and writing—original draft and editing. GC was involved in investigation, writing—review and editing, and funding acquisition. WS contributed to investigation. ZL was involved in investigation and funding acquisition. ZL contributed to conceptualization, methodology, and project administration.

Corresponding author

Correspondence to Guangming Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cao, G., Song, W. et al. Lamellar Spacing Characteristics of Eutectoids in Oxide Scale Formed on Iron After Holding at 300–500℃. High Temperature Corrosion of mater. 100, 251–264 (2023). https://doi.org/10.1007/s11085-023-10173-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10173-3

Keywords

Navigation