Skip to main content
Log in

In Situ Oxidation in Ni-Based Single-Crystal Superalloys with Varying Re Contents Observed by Environmental Transmission Electron Microscopy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In situ environmental transmission electron microscopy has previously been applied to traditional alloys and has been verified as a powerful tool for studying oxidation mechanisms. Single-crystal Ni-based superalloys are often used for commercial turbine blades, especially 1st- to 3rd-generation superalloys. The reactivity to oxidation of the single-crystal Ni-based superalloys was the main factor in deciding their bulk oxidation resistance. An overall study on different generations of various Re-containing Ni-based superalloys was conducted in this study to compare their difference in oxidation properties using an in situ technique. Nanoscale structural and elemental distributions across the γ/γ′ interface were assessed on three typical 1st- to 3rd-generation superalloys via modern electron microscopy. Oxidation at the γ/γ′ interface was systematically analysed by an in situ oxidation process in an environmental transmission electron microscope to reveal the nanoscale oxidation mechanisms and the roles of key elements. Preferential oxidation of the γ/γ′ interface is revealed in oxidation mechanisms. Aggregation of Cr and Re in the γ/γ′ interfaces of the 0Re and 7Re alloys induced a larger lattice misfit and a corresponding stress, which prompted priority oxidation at the interface. Key factors, including alloy elements and microstructures, are extracted, and this technique is expected to be applicable to more materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. S. Nalwa, Handbook of Surfaces and Interfaces of Materials. in Handbook of Surfaces and Interfaces of Materials, ed. H. S. Nalwa (Academic Press, Burlington, 2001), pp. xxv–xxviii.

    Chapter  Google Scholar 

  2. Y. Yu, Principles of Metallurgy, (Metallurgical Industry Press, Beijing, 2000).

    Google Scholar 

  3. R. E. Smallman and A. H. W. Ngan, Chapter 4 - Introduction to Dislocations. in Modern Physical Metallurgy, 8th ed, eds. R. E. Smallman and A. H. W. Ngan (Butterworth-Heinemann, Oxford, 2014), pp. 121–158.

    Chapter  Google Scholar 

  4. Q. Pan, J. Tong, and M. Tian, Fundamentals of Material Science, (Tsinghua University Press, Beijing, 2011).

    Google Scholar 

  5. H. Over and A. P. Seitsonen, Science 297, 2002 (2003).

    Article  CAS  Google Scholar 

  6. L. Li, L. Luo, J. Ciston, W. A. Saidi, E. A. Stach, J. C. Yang, and G. Zhou, Physical Review Letters 113, 2014 136104.

    Article  Google Scholar 

  7. R. C. Reed, The Superalloy Fundamentals and Applications, (Cambridge University Press & Mechanical Industry Press, London, 2016).

    Google Scholar 

  8. K. Kumar, R. Sankarasubramanian, and U. V. Waghmare, Computational Materials Science 97, 2015 (26).

    Article  CAS  Google Scholar 

  9. F. Forghani, J. Moon, J. C. Han, R. Rahimi, R. Abbaschian, C. G. Park, H. S. Kim, and M. Nili-Ahmadabadi, Materials Characterization 153, 2019 (284).

    Article  CAS  Google Scholar 

  10. A. B. Parsa, P. Wollgramm, H. Buck, A. Kostka, C. Somsen, A. Dlouhy, and G. Eggeler, Acta Materialia 90, 2015 (105).

    Article  CAS  Google Scholar 

  11. H. S. Kitaguchi, M. P. Moody, H. Y. Li, H. E. Evans, M. C. Hardy, and S. Lozano-Perez, Scripta Materialia 97, 2015 (41).

    Article  CAS  Google Scholar 

  12. S. Sanyal, U. V. Waghmare, P. R. Subramanian, and M. F. X. Gigliotti, Scripta Materialia 63, 2010 (391).

    Article  CAS  Google Scholar 

  13. Y. X. Wu, X. Y. Li, and Y. M. Wang, Acta Materialia 55, 2007 (4845).

    Article  CAS  Google Scholar 

  14. F. S. Pettit, G. H. Meier, and N. Birks, Introduction to the High Temperature Oxidation of Metals, 2nd ed (Cambridge University Press, Cambridge, 2006),.

    Google Scholar 

  15. A. Akhtar, S. Hegde, and R. C. Reed, JOM 58, 2006 (37).

    Article  CAS  Google Scholar 

  16. J. D. Ramsay, H. E. Evans, D. J. Child, M. P. Taylor, and M. C. Hardy, Corrosion Science 154, 2019 (277).

    Article  CAS  Google Scholar 

  17. X. Sun, L. Zhang, Y. Pan, X. Wang, Z. Huang, and L. Jiang, Corrosion Science 154, 2019 108216.

    Google Scholar 

  18. S. Cruchley, H. Evans, and M. Taylor, Materials at High Temperatures 33, 2016 (465).

    Article  CAS  Google Scholar 

  19. S. R. Hegde, High temperature oxidation behaviour of the single crystal superalloy CMSX-10. in Materials Engineering, (The University of British Columnbia, Columnbia, 2005), p. 58.

    Google Scholar 

  20. C. M. Younes, G. C. Allen, and J. A. Nicholson, Science and Technology 42, 2007 (80).

    CAS  Google Scholar 

  21. L. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, M. Chen, J. Han, D. J. Srolovitz, J. Teng, Y. Guo, G. Yang, D. Kong, E. Ma, Y. Hu, B. Yin, X. Huang, Z. Zhang, T. Zhu, and X. Han, Science 375, 2022 (1261–1265).

    Article  CAS  Google Scholar 

  22. S. Sun, D. Li, C. Yang, L. Fu, D. Kong, Y. Lu, Y. Guo, D. Liu, P. Guan, Z. Zhang, J. Chen, W. Ming, L. Wang, and X. Han, Phys. Rev. Lett. 128, 2022 015701.

    Article  CAS  Google Scholar 

  23. T. W. Hansen, Controlled Atmosphere Transmission Electron Microscopy Principles and Practice, (Springer, Berlin, 2016).

    Book  Google Scholar 

  24. R. Sharma, Journal of Materials Research 20, 2005 (1695).

    Article  CAS  Google Scholar 

  25. H. Yoshida, Y. Kuwauchi, J. R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, and S. Takeda, Science 20, 2012 (317).

    Article  Google Scholar 

  26. L. Luo, L. Zou, D. K. Schreiber, D. R. Baer, S. M. Bruemmer, G. Zhou, and C.-M. Wang, Scripta Materialia 114, 2016 (129).

    Article  CAS  Google Scholar 

  27. X. Fang, J. Zhang, Y. Zhao, Z. Yang, J. Xu, Q. Wu, H. Jiang, and Y. Luo, Materials for Mechanical Engineering 42, 2018 (33).

    Google Scholar 

  28. J. Zhang, Y. Li, X. Li, Y. Zhai, Q. Zhang, D. Ma, S. Mao, Q. Deng, Z. Li, X. Li, X. Wang, Y. Liu, Z. Zhang, and X. Han, Nature Communications 12, 2021 (2218).

    Article  CAS  Google Scholar 

  29. K. Sohlberg, T. J. Pennycook, W. Zhou, and S. J. Pennycook, Physical Chemistry Chemical Physics 17, 2015 (3982).

    Article  CAS  Google Scholar 

  30. D. B. Williams and C. B. Carter, Transmission Electron Microscopy—A Textbook for Materials Science, 2nd ed (Springer, Berlin, 2009),.

    Book  Google Scholar 

  31. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 3 Edition (Springer, Boston, MA, 2011),.

    Book  Google Scholar 

  32. http://www.globalsino.com/EM/page4623.html

  33. Z. Chen, T. Dong, W. Qu, Y. Ru, H. Zhang, Y. Pei, S. Gong, and S. Li, Corrosion Science 156, 2019 (161).

    Article  CAS  Google Scholar 

  34. J. X. Chang, D. Wang, G. Zhang, L. H. Lou, and J. Zhang, Corrosion Science 117, 2017 (35).

    Article  CAS  Google Scholar 

  35. M. Solecka, A. Radziszewska, and B. Rutkowski, Corrosion Science 149, 2019 (244).

    Article  CAS  Google Scholar 

  36. C. M. F. Rae and R. C. Reed, Acta Materialia 49, 2001 (4113).

    Article  CAS  Google Scholar 

  37. B. Seiser, R. Drautz, and D. G. Pettifor, Acta Materialia 59, 2011 (749).

    Article  CAS  Google Scholar 

  38. Y. Zhai, Y. Chen, Y. Zhao, H. Long, X. Li, Q. Deng, H. Lu, X. Yang, G. Yang, W. Li, L. Yang, S. Mao, Z. Zhang, A. Li, and X. Han, Acta Materialia 215, 2021 (116991).

    Article  CAS  Google Scholar 

  39. N. B. Pilling and R. E. Bedworth, J. Inst. Metals 29, 1923 (529).

    Google Scholar 

  40. Y. Chen, W. Zhang, Y. Zhao, Y. Zhai, B. Zhang, H. Lu, G. Yang, L. Yang, and A. Li, Scripta Materialia 203, 2021 114106.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 91860202, 51988101, 51872008), the “111” Project under the DB18015 grant and Beijing Outstanding Young Scientists Projects (BJJWZYJH01201910005018). The authors thank Dr. Dongchang Wu from Thermofisher Scientific Shanghai Nanoport for useful discussion and assistance with the Titan-ETEM and Titan-Themis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang Li.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3653 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Qiao, S., Zhao, Y. et al. In Situ Oxidation in Ni-Based Single-Crystal Superalloys with Varying Re Contents Observed by Environmental Transmission Electron Microscopy. Oxid Met 98, 399–414 (2022). https://doi.org/10.1007/s11085-022-10128-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10128-0

Keywords

Navigation