Skip to main content
Log in

Artificial Intelligence Approach to Predict Elevated Temperature Cyclic Oxidation of Fe–Cr and Fe–Cr–Ni Alloys

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Predictive modelling of cyclic oxidation (CO) behavior is challenging. CO is dependent on several factors including time, temperature, atmosphere (composition, pressure) and alloy composition. The machine learning algorithm CatBoost is used to model, for the first time, CO of binary Fe-(10–20)% Cr alloys and ternary Fe-(16–20) %Cr-(10–30)%Ni alloys using published data. The CO conditions were 650 °C and 800 °C under air + 10% water vapor atmosphere. The CatBoost model was successfully trained and tested using 80:20% of the data with the composition, temperature and cycle time as input variables and mass change as the output. The five-fold cross-validation showed that the model had an average accuracy of 0.98 (R2). The CatBoost algorithm was also used as a classifier that, given a composition, predicts if the alloy will form protective oxide scale, oxidize rapidly or undergo spallation after 100 h of CO, accurately.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw data have been extracted from [5]. Our curated data can be shared based on an appropriate request from any researcher.

Code Availability

The CatBoost model code is available here: https://github.com/sree369nidhi/Artificial-Intelligence-approach-to-predict-elevated-temperature-cyclic-oxidation-of-Fe-Cr-and-Fe-Cr.git

References

  1. J. L. Smialek, 461–464, 2004 (663).

    Article  Google Scholar 

  2. C. E. Lowell, C. A. Barrett, R. W. Palmer, V. Judith, and H. B. Probst, Oxidation of Metals 36, 1991 (81).

    Article  CAS  Google Scholar 

  3. D. Poquillon and D. Monceau, Oxidation of Metals 59, 2003 (409).

    Article  CAS  Google Scholar 

  4. J. L. Smialek, Acta Materialia 51, 2003 (469).

    Article  CAS  Google Scholar 

  5. R. Peraldi and B. A. Pint, Oxidation of Metals 61, 2004 (463).

    Article  CAS  Google Scholar 

  6. E. Kavlakoglu. AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the Difference? .(https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the Difference?)

  7. H. K. D. H. Bhadeshia, ISIJ International 39, 1999 (966–979).

    Article  CAS  Google Scholar 

  8. H. K. D. H. Bhadeshia, R. C. Dimitriu, S. Forsik, J. H. Pak, and J. H. Ryu, Materials Science and Technology 25, 2009 (504–510).

    Article  CAS  Google Scholar 

  9. M. P. Phaniraj and A. K. Lahiri, Materials Science and Technology. 20, 2004 (14).

    Google Scholar 

  10. M. P. Phaniraj and A. K. Lahiri, Journal of Materials Processing Technology 141, 2003 (219–227).

    Article  CAS  Google Scholar 

  11. J. Peng, R. Pillai, M. Romedenne, et al., NPJ Materials Degradation 5, 2021 (1–8).

    Article  Google Scholar 

  12. R. Pillai, M. Romedenne, J. Peng, et al., Oxidation of Metals 97, 2022 (51–76).

    Article  CAS  Google Scholar 

  13. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, Advances in Neural Information Processing Systems 2018, 2018 (6638–6648).

    Google Scholar 

  14. L. Diao, D. Niu, Z. Zang, C. Chen, Short-term weather forecast based on wavelet denoising and catboost. Chinese Control Conf. CCC. 2019, 3760 (2019).

  15. J. T. Hancock and T. M. Khoshgoftaar, Journal of Big Data 7, 2020 (1–45).

    Article  Google Scholar 

  16. S. Lee, T. P. Vo, H. T. Thai, J. Lee, and V. Patel, Structural Engineering 238, 2021 (112109).

    Article  Google Scholar 

  17. S. H. Kong, D. Ahn, B. Kim, et al., JBMR Plus. 4, 2020 (1–9).

    Article  Google Scholar 

  18. H. C. Yi, Z. H. You, and Z. H. Guo, Frontiers in Genetics 10, 2019 (1–10).

    Article  Google Scholar 

  19. Ali M. PyCaret: An pen source low code machine learning library in Python. 2020 Available at: https://www.pycaret.org/about.

  20. CatBoost: Multiclassification. Available at: https://catboost.ai/en/docs/concepts/loss-functions-multiclassification#objectives-and-metrics.

  21. James G, Hastie DWT, Tibshirani R. Ml and Statistics (Springer); 2013.

  22. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MKA contributed to formal analysis, software, methodology. MSI contributed to formal analysis, software. PHAD contributed to project administration. MPP contributed to conceptualization, data curation, writing—original draft, review and editing.

Corresponding author

Correspondence to M. P. Phaniraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anirudh, M.K., Iyengar, M.S., Desik, P.H.A. et al. Artificial Intelligence Approach to Predict Elevated Temperature Cyclic Oxidation of Fe–Cr and Fe–Cr–Ni Alloys. Oxid Met 98, 291–303 (2022). https://doi.org/10.1007/s11085-022-10123-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10123-5

Keywords

Navigation