Skip to main content
Log in

Interdiffusion Behaviour of Silicon-Modified Aluminide Coating in Atmospheres Containing Water Vapour at 1050 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Si-modified aluminide coatings were oxidised in air and an air + water vapour atmosphere at 1050 °C. The relationship between grain size and interdiffusion behaviour was established as a function of Al depletion in the aluminide coatings. The grain size of the aluminide coatings was characterised by electron back-scattered diffraction to account for the evolution of the grain morphology with Al content reduction during oxidation. The grain growth in the aluminide coatings was accelerated by the water-vapour-filled atmosphere, and severe internal oxidation occurred. High Al depletion led to grain growth of aluminide coating in the air + water vapour atmosphere. Ti-rich particles containing silicon were observed in the aluminide coatings, and these particles were prone to formation of interior void. In the process, these voids were associated with the Kirkendall effect.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All the data, models, and codes generated or used during the study appear in the submitted article.

References

  1. D. Furrer and H. Fecht, JOM 51, 14 (1991).

    Article  Google Scholar 

  2. H. Chen and A. Rushworth, Journal of Materials Science & Technology 45, 108 (2020).

    Article  Google Scholar 

  3. K. Kim, D. Kim, K. Park, J. Yun, and C.-S. Seok, Journal of Materials Science & Technology 105, 45 (2022).

    Article  Google Scholar 

  4. C. T. Yu, H. Liu, C. Y. Jiang, Z. B. Bao, S. L. Zhu, and F. H. Wang, Journal of Materials Science & Technology 35, 350 (2019).

    Article  CAS  Google Scholar 

  5. N. P. Padture, M. Gell, and E. H. Jordan, Science 296, 280 (2002).

    Article  CAS  Google Scholar 

  6. S. J. Geng, F. H. Wang, and S. Zhang, Surface and Coatings Technology 167, 161 (2003).

    Article  CAS  Google Scholar 

  7. Y. Niu, W. T. Wu, D. H. Boone, J. S. Smith, J. Q. Zhang, and C. L. Zhen, Le Journal de Physique IV 03, 511 (1993).

    CAS  Google Scholar 

  8. G. W. Goward, Surface and Coatings Technology 108–109, 73 (1998).

    Article  Google Scholar 

  9. G. R. Krishna, D. K. Das, V. Singh, and S. V. Joshi, Materials Science and Engineering A 251, 40 (1998).

    Article  Google Scholar 

  10. S. Alpérine, P. Steinmetz, A. Friant-Costantini, and P. Josso, Surface and Coatings Technology 43–44, 347 (1990).

    Article  Google Scholar 

  11. W. J. Cheng and C. J. Wang, Materials Characterization 61, 467 (2010).

    Article  CAS  Google Scholar 

  12. Y. Q. Wang and M. Suneson, Surface and Coatings Technology 215, 7 (2013).

    Article  CAS  Google Scholar 

  13. K. Shirvani, M. Saremi, A. Nishikata, and T. Tsuru, Materials Science Forum 461–464, 335 (2004).

    Article  Google Scholar 

  14. K. Shirvani and S. V. Miraboutalebi, Materials Science Forum 889, 159 (2017).

    Article  Google Scholar 

  15. M. C. Maris-Sida, G. H. Meier, and F. S. Pettit, Metallurgical & Materials Transactions A 34, 2609 (2003).

    Article  Google Scholar 

  16. N. Maier, K. G. Nickel, and G. Rixecker, Journal of the European Ceramic Society 27, 2705 (2007).

    Article  CAS  Google Scholar 

  17. Z. Y. Zhao, J. T. Lu, J. Y. Huang, Q. N. Wang, X. Q. Zhang, and J. W. Wang, Corrosion Science 189, 109605 (2021).

    Article  CAS  Google Scholar 

  18. C. Li, T. H. Huang, P. Song, X. H. Yuan, J. Feng, K. Y. Lü, Q. L. Li, W. H. Duan, and J. S. Lu, Corrosion Science 163, 108240 (2020).

    Article  CAS  Google Scholar 

  19. Z. Zhong, Journal of Synthetic Crystals 2, 156 (2003).

    Google Scholar 

  20. J. Zang, P. Song, J. Feng, X. Xiong, R. Chen, G. Liu, and J. Lu, Corrosion Science 112, 170 (2016).

    Article  CAS  Google Scholar 

  21. M. Hong, J. Fan, R. Scholz, D. Hesse, M. K. Nielsch, and U. Gösele, Nano Letters 7, 993 (2007).

    Article  Google Scholar 

  22. L. Qiu, F. Yang, W. Zhang, X. Zhao, and P. Xiao, Corrosion Science 89, 13 (2014).

    Article  CAS  Google Scholar 

  23. W. Brandl, H. J. Grabke, D. Toma, and J. Krüger, Surface and Coatings Technology 86, 41 (1996).

    Article  Google Scholar 

  24. P. Niranatlumpong, C. B. Ponton, and H. E. Evans, Oxidation of Metals 53, 241 (2000).

    Article  CAS  Google Scholar 

  25. B. A. Pint, Surface and Coatings Technology 188–189, 71 (2004).

    Article  Google Scholar 

  26. K. Yuan, R. Eriksson, R. L. Peng, X. H. Li, S. Johansson, and Y. D. Wang, Surface and Coatings Technology 232, 204 (2013).

    Article  CAS  Google Scholar 

  27. D. J. Young, D. Naumenko, E. Wessel, L. Singheiser, and W. J. Quadakkers, Metallurgical and Materials Transactions A 42, 1173 (2011).

    Article  CAS  Google Scholar 

  28. J. L. Jiang, T. Zhou, W. Shao, and C. G. Zhou, Journal of Alloys and Compounds 786, 2019 (920).

    Article  CAS  Google Scholar 

  29. Y. Wu, L. L. Wei, W. T. He, and H. B. Guo, Vacuum 193, 2021 (11057).

    Article  CAS  Google Scholar 

  30. V. D. Divya, U. Ramamurty, and A. Paul, Philosophical Magazine 92, 2012 (2187).

    Article  CAS  Google Scholar 

  31. D. F. Susan and A. R. Marder, Acta Materialia 49, 2001 (1153).

    Article  CAS  Google Scholar 

  32. O. Torun, Surface and Coatings Technology 202, 2008 (3549).

    Article  CAS  Google Scholar 

  33. W. J. Cheng, Y. Y. Chang, and C. J. Wang, Surface and Coatings Technology 203, 2008 (401).

    Article  CAS  Google Scholar 

  34. H. Liu, M. M. Xu, S. Li, Z. B. Bao, S. L. Zhu, and F. H. Wang, Journal of Materials Science & Technology 54, 132 (2020).

    Article  Google Scholar 

  35. D. J. Young and B. Gleeson, Corrosion Science 44, 345 (2002).

    Article  CAS  Google Scholar 

  36. A. Rahmel and J. Tobolski, Corrosion Science 5, 333 (1965).

    Article  CAS  Google Scholar 

  37. N. K. Othman, N. Othman, J. Zhang, and D. J. Young, Corrosion Science 51, 3039 (2009).

    Article  CAS  Google Scholar 

  38. S. R. J. Saunders, M. Monteiro, and F. Rizzo, Progress in Materials Science 53, 775 (2008).

    Article  CAS  Google Scholar 

  39. V. Trindade, H. J. Christ, and U. Krupp, Oxidation of Metals 73, 551 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant No. 52071168), the Rare and Precious Metal Materials Genome Engineering Project of Yunnan Province (No. 202002AB080001), and Yunnan Province Science and Technology Major Project (No. 2019ZE001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Song, P., Feng, J. et al. Interdiffusion Behaviour of Silicon-Modified Aluminide Coating in Atmospheres Containing Water Vapour at 1050 °C. Oxid Met 98, 179–198 (2022). https://doi.org/10.1007/s11085-022-10118-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10118-2

Keywords

Navigation