Skip to main content
Log in

Features of Coating Formation by Micro-Arc Oxidation on High-Silicon Aluminum Alloy

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The features of coating formation by micro-arc oxidation (MAO) on an aluminum alloy with a high content of silicon (>20 wt %) are studied. The processing of high-silicon aluminum alloys by the MAO method is very difficult, since the MAO process is unstable, and the coating is nonuniform and small in thickness. The hypothesis of this work suggests that a high-quality thick MAO coating on high-silicon aluminum alloys is formed at a high density of the anode current. We demonstrate the influence of electrical modes of the MAO process on the properties of coatings formed on an M244 aluminum alloy containing 23–26 wt % Si. The samples were processed using four modes with different densities of the anode current. The thickness, microhardness, and porosity of the coatings are studied. It is found that with an increase in the anode current density, the thickness of the MAO coating increases. The maximum thickness of the MAO coating is ~135 μm. An increase in the anode current density of more than 13 A/dm2 does not affect the MAO-coating thickness. It is found that the growth rate of the MAO coating varies in proportion to the anode current density. However, the microhardness and porosity of MAO coatings on all samples are independent of the current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Mollenhauer and H. Tschoke, Handbook of Diesel Engines (Springer, London, 2010). https:www.doi.org/10.1007/978-3-540-89083-6

    Book  Google Scholar 

  2. W. S. Miller, L. Zhuang, J. Bottema, A. J. Wittebrood, P. D. Smet, A. Haszler, and A. Vieregge, Mater. Sci. Eng., A 280, 37 (2000). https://www.doi.org/10.1016/S0921-5093(99)00653-X

    Article  Google Scholar 

  3. M. M. Haque, J. Mater. Proces. Technol. 118, 69 (2001). https://www.doi.org/10.1016/S0924-0136(01)00869-X

    Article  CAS  Google Scholar 

  4. I. M. Hutchings, S. Wilson, and A. T. Alpas, Comprehensive Composite Materials (Pergamon, Oxford, 2000), p. 501. https://www.doi.org/10.1016/B0-08-042993-9/00018-8

    Google Scholar 

  5. K. Liu and X.-G. Chen, J. Mater. Res. 20, 3430 (2018). https://www.doi.org/10.1557/jmr.2018.117

    Article  Google Scholar 

  6. S. T. Olohunde, A. M. Hafizi, I. Jamaliah, A. A. Al-Bakoosh, O. O. Segun, and I. O. Sadiq, J. Bio- Tribo-Corros. 5, 41 (2019). https://www.doi.org/10.1007/s40735-019-0224-x

  7. R. Grilli, M. A. Baker, J. E. Castle, and J. F. Watts, Corros. Sci. 52, 2855 (2010). https://www.doi.org/10.1016/j.corsci.2010.04.035

    Article  CAS  Google Scholar 

  8. Y. Liu, J. M. C. Mol, and G. C. A. M. Janssen, J. Bio- Tribo-Corros. 2, 9 (2016). https://www.doi.org/10.1007/s40735-016-0042-3

  9. H. F. Ma, Z. B. Liu, and F. L. Yin, Corros. Prot. 24, 162 (2003). https://www.doi.org/10.4236/msce.2014.27007

  10. C. F. Oduoza, Enam. Khan, and T. Sihra, J. Mater. Sci. Chem. Eng. 2, 59 (2014). https://www.doi.org/10.4236/msce.2014.27007

    CAS  Google Scholar 

  11. D. K. Rajak, A. Kumar, B. Ajit, and P. L. Menezes, Appl. Sci. 10, 4445 (2021). https://www.doi.org/10.3390/app11104445

    Article  Google Scholar 

  12. A. M. El-Hameed, Y. A. Abdel-Aziz, and F. S. El-Tokhy, Mater. Sci. Appl. 8, 197 (2017). https://www.doi.org/10.4236/msa.2017.82013

    Google Scholar 

  13. D. Zaguliaev, S. Konovalov, Y. Ivanov, and V. Gromov, Appl. Surf. Sci. 498, 143767 (2019). https://www.doi.org/10.1016/j.apsusc.2019.143767

    Article  CAS  Google Scholar 

  14. Y. Geng, X. Chen, S. Konovalov, I. Panchenko, Y. Ivanov, V. Deev, and E. Prusov, Surf. Coat. Technol. 434, 128226 (2022). https://www.doi.org/10.1016/j.surfcoat.2022.128226

  15. V. Hutsaylyuk, M. Student, V. Posuvailo, O. Student, V. Hvozdets’kyi, P. Maruschak, V. Zakiev, J. Mater. Res. Technol, No. (2021), 1682. J. Mater. Res. Technol. 14, 1682 (2021). https://www.doi.org/10.1016/j.jmrt.2021.07.082

    Article  CAS  Google Scholar 

  16. E. S. Atroshchenko, O. E. Chufistov, I. A. Kazantsev, and S. I. Kamyshanskii, Met. Sci. Heat Treat. 42, 411 (2000). https://www.doi.org/10.1023/A:1004882625838

  17. A. V. Kolomeichenko, Y. A. Kuznetsov, V. N. Logachev, N. V. Titov, and S. N. Sharifullin, J. Phys.: Conf. Ser. 9, 012074 (2018). https://www.doi.org/10.1088/1742-6596/1058/1/012074

    Google Scholar 

  18. J. A. Curran, H. Kalkanci, Yu. Magurova, and T. W. Clyne, Surf. Coat. Technol. 201, 8683. (2007). https://www.doi.org/10.1016/j.surfcoat.2006.06.050

  19. A. V. Kolomeichenko and I. N. Kravchenko, Russ. Metall. 13, 1410 (2019). https://www.doi.org/10.1134/S0036029519130147

    Article  Google Scholar 

  20. N. Y. Dudareva, P. V. Ivashin, R. F. Gallyamova, A. Y. Tverdokhlebov, and M. M. Krishtal, Met. Sci. Heat Treat. 62, 701 (2021). https://www.doi.org/10.1007/s11041-021-00625-5

  21. L. Qu, M. Li, M. Liu, E. Zhang, and Ch. Ma, J. Adv. Ceram. 2, 227 (2013). https://www.doi.org/10.1007/s40145-013-0064-y

    Article  CAS  Google Scholar 

  22. N. Yu. Dudareva, R. D. Enikeev, and V. Yu. Ivanov, Proc. Eng. 206, 1382 (2017). https://www.doi.org/10.1016/j.proeng.2017.10.649

  23. I. A. Butusov and N. Y. Dudareva, Russ. Eng. Res. 36, 116 (2016). https://www.doi.org/10.3103/S1068798X16020064

    Article  Google Scholar 

  24. A. V. Chavdarov and V. A. Denisov, Nexo Rev. Cient. 34, 1420 (2021). https://www.doi.org/10.5377/nexo.v34i04.12689

  25. F. Alshmri, Adv. Mater. Res. 774776, 1271 (2013). https://www.doi.org/10.4028/http://www.scientific.net/ AMR.774-776.1271

  26. M. Javidani and D. Larouche, Int. Mater. Rev. 59, 132 (2014). https://www.doi.org/10.1179/1743280413Y.0000000027

    Article  CAS  Google Scholar 

  27. M. M. Krishtal, Met. Sci. Heat Treat. 46, 377 (2004). https://www.doi.org/10.1023/B:MSAT.0000049810.75325.f9

  28. M. Krishtal and M. Ryumkin, Met. Sci. Heat Treat. 49, 111 (2007). https://www.doi.org/10.1007/s11041-007-0021-x

  29. V. Dehnavi, X. Y. Liu, and B. L. Luan, Surf. Coat. Technol. 251, 106. (2014). https://www.doi.org/10.1016/j.surfcoat.2014.04.010

  30. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Technol. 122, 73 (1999). https://www.doi.org/10.1016/S0257-8972(99)00441-7

  31. Pistons and Engine Testing (Vieweg+Teubner, Wiesbaden, 2012), p. 59. https://www.doi.org/10.1007/978-3-8348-8662-0_4

  32. Saltykov, S.A., Stereometric Metallography (Metallurgiya, Moscow, 1976) [in Russian].

    Google Scholar 

  33. H. Jin, S. Haldar, H. A. Bruck, and W. -Y. Lu, Exp. Mech. 51, 565 (2011). https://www.doi.org/10.1007/s11340-010-9459-7

    Article  Google Scholar 

  34. A. Pasieka and Z. Konopka, Arch. Foundry Eng. 13, 29 (2013). https://www.doi.org/10.2478/afe-2013-0061

  35. D. Mylnikov, A. Efimov, and V. Ivanov, J. Phys.: Conf. Ser. 830, 012162 (2017). https://www.doi.org/10.1088/1742-6596/830/1/012162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Deev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudareva, N.Y., Gallyamova, R.F., Deev, V.B. et al. Features of Coating Formation by Micro-Arc Oxidation on High-Silicon Aluminum Alloy. J. Surf. Investig. 16, 1301–1307 (2022). https://doi.org/10.1134/S1027451022060350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060350

Keywords:

Navigation