Skip to main content
Log in

High-Temperature Oxidation Behavior of a Silico-Aluminized MCrAlY Coating on a Ni-Based Superalloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this research, silico-aluminide diffusion coating was applied on a conventional NiCoCrAlY coating that was deposited on Hastelloy-X superalloy via the high-velocity oxy-fuel (HVOF) thermal spraying technique. The slurry method was utilized as the diffusion coating method. Diffusion heat treatment was carried out at 1050 °C. High-temperature oxidation behavior of NiCoCrAlY/silico-aluminide coated samples was studied at 1000 °C and compared with those of conventional NiCoCrAlY coatings. The coatings were explored using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis before and after oxidation testing. Both coatings followed parabolic kinetics. The silico-aluminide overlay coating outperformed the NiCoCrAlY coating with respective parabolic rate constants of 0.0958 and 0.1702 μm2/h. After 150 h of oxidation, the silico-aluminized overlay coating maintained a single layer of alumina, while a double-layered oxide consisting of spinel and aluminum oxide was observed in the case of conventional NiCoCrAlY coating, reflecting higher stability of the NiCoCrAlY/silico-aluminized coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

taken from the outer layer of the diffusion coating (20–30 μm from the surface) to determine the distribution of precipitates in the matrix (Fig. 13). It seems that a similar mechanism occurred in sample C as well. This also proves the existence of silicide precipitates in the aluminide matrix

Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. J. Nicholls, N. J. Simms, W. Chan, and H. Evans, Surface and Coatings Technology 149, 2002 (236).

    Article  CAS  Google Scholar 

  2. H. Wang, X. Zhang, Z. Xu, H. Wang, and C. Zhu, Corrosion Science 147, 2019 (313).

    Article  CAS  Google Scholar 

  3. K. Shirvani, M. Saremi, A. Nishikata, and T. Tsuru, Materials transactions 43, 2002 (2622–2628).

    Article  CAS  Google Scholar 

  4. W. Sloof and T. Nijdam, International Journal of Materials Research 100, (10), 2009 (1318–1330).

    Article  CAS  Google Scholar 

  5. P. Zhang, Performance of MCrAlX coatings: Oxidation, (Linköping University Electronic Press, Hot corrosion and Interdiffusion, 2019).

    Google Scholar 

  6. A. Zakeri, E. Bahmani, A. S. R. Aghdam, B. Saeedi, and M. Bai, Journal of Alloys and Compounds 835, 2020 (155319).

    Article  CAS  Google Scholar 

  7. F. Ghadami, A. S. R. Aghdam, and S. Ghadami, Vacuum 185, 2021 (109980).

    Article  CAS  Google Scholar 

  8. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman, Journal of Thermal Spray Technology 17, 2008 (199).

    Article  CAS  Google Scholar 

  9. R. Sitek, et al., Intermetallics 74, 2016 (15).

    Article  CAS  Google Scholar 

  10. R. F. Glória, N. Chaia, A. W. da Cruz, L. B. Alckmin, C. A. Nunes, and G. Rodrigues, Surface and Coatings Technology 411, 2021 (126999).

    Article  Google Scholar 

  11. M. C. Meelu, A. T. Jones, and B. G. McMordie, Aluminide-silicide coatings, coating compositions, process for coating and improved coated products, ed: Google Patents, (2000).

  12. Lucjan Swadźba, Materials Science Forum 163, 1994 (619).

    Article  Google Scholar 

  13. A. Zakeri, M. R. M. Balashadehi, and A. S. R. Aghdam, Journal of Composites and Compounds 3, 2021 (1).

    Article  Google Scholar 

  14. Y. Z. Liu, W. Qiong, S. S. Li, Y. Ma, and S. K. Gong, Materials Science Forum 747, 2013 (575).

    Article  Google Scholar 

  15. B. Kanka and H. Schneider, Journal of materials science 29, 1994 (1239).

    Article  CAS  Google Scholar 

  16. B. Grégoire, G. Bonnet, and F. Pedraza, Surface and Coatings Technology 359, 2019 (323).

    Article  Google Scholar 

  17. S. Azarmehr, K. Shirvani, A. Solimani, M. Schütze, and M. Galetz, Surface and Coatings Technology 362, 2019 (252).

    Article  CAS  Google Scholar 

  18. M. Mollard, F. Pedraza, B. Bouchaud, X. Montero, M. Galetz, and M. Schütze, Surface and Coatings Technology 270, 2015 (102).

    Article  CAS  Google Scholar 

  19. P. Song, et al., Surface and Coatings Technology 344, 2018 (489).

    Article  CAS  Google Scholar 

  20. A. Jalowicka, D. Naumenko, M. Ernsberger, R. Herzog, and W. Quadakkers, Materials at High Temperatures 35, 2018 (66).

    Article  CAS  Google Scholar 

  21. M. Mohammadi, S. A. J. Jahromi, S. Javadpour, A. Kobayashi, and K. Shirvani, Oxidation of metals 78, 2012 (17).

    Article  CAS  Google Scholar 

  22. D. Mercier, Oxidation behavior of nanostructured CoNiCrAlY and NiCoCrAlY sprayed by HVOF, (2010).

  23. S. Shiomi, M. Miyake, T. Hirato, and A. Sato, Materials transactions 52, 2011 (1216).

    Article  CAS  Google Scholar 

  24. A. Agüero, V. González, and M. Gutiérrez, Defect and Diffusion Forum 289, 2009 (243).

    Article  Google Scholar 

  25. A. Bradshaw, N. Simms, and J. Nicholls, Surface and Coatings Technology 216, 2013 (8).

    Article  CAS  Google Scholar 

  26. K. Shirvani, M. Saremi, and Y. Yamamoto, Materials and Corrosion 57, 2006 (182).

    Article  CAS  Google Scholar 

  27. R. Devasia, A. Painuly, K. J. Deepa Devapal, and K. Sreejith, Continuous fiber reinforced ceramic matrix composites. in Fiber Reinforced Composites, (Elsevier, 2021), p. 669.

    Chapter  Google Scholar 

  28. C. Fu, W. Kong, and G. Cao, Surface and Coatings Technology 258, 2014 (347).

    Article  CAS  Google Scholar 

  29. S. Bose, High temperature coatings. Butterworth-Heinemann, (2017)

  30. C. Wagner, Journal of the electrochemical Society 99, 1952 (369).

    Article  CAS  Google Scholar 

  31. B. Pieraggi, Oxidation of metals 27, 1987 (177).

    Article  CAS  Google Scholar 

  32. W. Quadakkers, D. Naumenko, E. Wessel, V. Kochubey, and L. Singheiser, Oxidation of metals 61, 2004 (17).

    Article  CAS  Google Scholar 

  33. D. J. Young, High temperature oxidation and corrosion of metals. Elsevier, (2008).

  34. Y. Chen, X. Zhao, and P. Xiao, Acta Materialia 159, 2018 (150).

    Article  CAS  Google Scholar 

  35. A. G. Evans, D. Mumm, J. Hutchinson, G. Meier, and F. Pettit, Progress in materials science 46, 2001 (505).

    Article  Google Scholar 

  36. R. Saharkhiz, Z. Valefi, M. Mirjani, A. Abdollahi, and S. Taghi-Ramezani, Surface and Coatings Technology 394, 2020 (125818).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bahamirian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, E., Hadavi, S.M.M., Salehi Doolabi, D. et al. High-Temperature Oxidation Behavior of a Silico-Aluminized MCrAlY Coating on a Ni-Based Superalloy. Oxid Met 97, 575–597 (2022). https://doi.org/10.1007/s11085-022-10109-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10109-3

Keywords

Navigation