Skip to main content
Log in

Ni–Co/ZrO2 Composite Coatings via Electroless Plating on Crofer 22APU for SOFC Interconnect Applications: Oxidation and Chromium Vaporization Behavior

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ferritic stainless steels are among the best metallic interconnects for solid oxide fuel cells (SOFCs). Nevertheless, cathode poisoning, due to the evaporation of Cr from the interconnect material, is a significant obstacle that unfavorably influences the SOFC performance. Hence, high oxidation resistance without reducing the electrical conductivity is needed. To overcome this problem, many coatings have been tested thus far. In this study, a Ni–Co–ZrO2 coating was deposited on the surface of the Crofer 22APU steel via electroless plating followed by the appropriate thermal treatment to obtain a high packing coating layer. The cyclic oxidation tests were performed at 800 °C for twenty 25-h cycles. In addition to the oxidation experiments, chromium evaporation value was measured by the denuder technique. Investigations showed this coating could act as an obstacle to improve the oxidation behavior of the steel. As the result of the rapid healing, Cr evaporation for the Ni–Co/ZrO2-coated steel was obtained 10 times lower than the uncoated steel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Przybylski, T. Brylewski, E. Durda, R. Gawel, and A. Kruk, Journal of Thermal Analysis and Calorimetry 116, 825 (2014).

    Article  CAS  Google Scholar 

  2. Q. Zhao, S. Geng, X. Gao, G. Chen, and F. Wang, Journal of Power Sources Advances 2, 100011 (2020).

    Article  Google Scholar 

  3. M. A. Hassan, O. B. Mamat, and M. Mehdi, International Journal of Hydrogen Energy 45, 25191 (2020).

    Article  CAS  Google Scholar 

  4. C. Jia, et al., Journal of Alloys and Compounds 787, 1327 (2019).

    Article  CAS  Google Scholar 

  5. H. Abdoli, S. Molin, and H. Farnoush, Materials Letters 259, 126898 (2019).

    Article  CAS  Google Scholar 

  6. N. J. Magdefrau, Evaluation of Solid Oxide Fuel Cell Interconnect Coatings: Reaction Layer Microstructure, Chemistry and Formation Mechanisms (2013). Doctoral Dissertations, 106. https://opencommons.uconn.edu/dissertations/106

  7. B. K. Kim, D.-I. Kim, and K.-W. Yi, Corrosion Science 130, 45 (2018).

    Article  CAS  Google Scholar 

  8. F. Saeidpour, M. Zandrahimi, and H. Ebrahimifar, Materials at High Temperatures 37, 89 (2020).

    Article  CAS  Google Scholar 

  9. S. Molin, M. Chen, J. Bowen, and P. Vang Hendriksen, ECS Transactions 57, 2245 (2013).

    Article  CAS  Google Scholar 

  10. S. Geng, Q. Wang, W. Wang, S. Zhu, and F. Wang, International Journal of Hydrogen Energy 37, 916 (2012).

    Article  CAS  Google Scholar 

  11. B. Bakhit and A. Akbari, Journal of Coatings Technology and Research 10, 285 (2013).

    Article  CAS  Google Scholar 

  12. M. Srivastava, G. William, A. Jain, and K. Rajam, Surface and Coatings Technology 202, 310 (2007).

    Article  CAS  Google Scholar 

  13. B. R. Tian and Y. Cheng, Electrochimica Acta - ELECTROCHIM ACTA 53, 511 (2007).

    Article  CAS  Google Scholar 

  14. Z. Zhaleh, M. Zandrahimi, and H. Ebrahimifar, International Journal of Iron & Steel Society of Iran 16, 34 (2019).

    Google Scholar 

  15. F. Saeidpour, M. Zandrahimi, and H. Ebrahimifar, International Journal of Hydrogen Energy 44, 3157 (2019).

    Article  CAS  Google Scholar 

  16. F. Saeidpour, M. Zandrahimi, and H. Ebrahimifar, Corrosion Science 153, 200 (2019).

    Article  CAS  Google Scholar 

  17. C. Xiong, et al., International journal of electrochemical science 11, 906 (2016).

    CAS  Google Scholar 

  18. E. Khoran and H. Ebrahimifar, Oxidation of Metals 91, 177 (2019).

    Article  CAS  Google Scholar 

  19. E. Nad and M. Ehteshamzadeh, Surface Engineering and Applied Electrochemistry 50, 50 (2014).

    Article  Google Scholar 

  20. R. Sachitanand, M. Sattari, J.-E. Svensson, and J. Froitzheim, International Journal of Hydrogen Energy 38, 15328 (2013).

    Article  CAS  Google Scholar 

  21. J. B. Ferguson, H. F. Lopez, P. K. Rohatgi, K. Cho, and C.-S. Kim, Metallurgical and Materials Transactions A 45, 4055 (2014).

    Article  CAS  Google Scholar 

  22. F. Saeidpour, M. Zandrahimi, and H. Ebrahimifar, Oxidation of Metals 93, 87 (2020).

    Article  CAS  Google Scholar 

  23. A. Mosavi and H. Ebrahimifar, International Journal of Hydrogen Energy 45, 3145 (2020).

    Article  CAS  Google Scholar 

  24. A. Harthøj, T. Holt, and P. Møller, Journal of Power Sources 281, 227 (2015).

    Article  CAS  Google Scholar 

  25. J. W. Stevenson, Z. G. Yang, G. G. Xia, Z. Nie, and J. D. Templeton, Journal of Power Sources 231, 256 (2013).

    Article  CAS  Google Scholar 

  26. B. Chi, J. Li, Y. Han, and Y. Chen, International Journal of Hydrogen Energy 29, 605 (2004).

    Article  CAS  Google Scholar 

  27. T. Fu, et al., Coatings 12, 141 (2022).

    Article  CAS  Google Scholar 

  28. J. Wu, C. Johnson, R. Gemmen, and X. Liu, Journal of Power Sources 189, 1106 (2009).

    Article  CAS  Google Scholar 

  29. R. Cueff, et al., Applied Surface Science 229, 233 (2004).

    Article  CAS  Google Scholar 

  30. M. Zhao, S. Geng, G. Chen, and F. Wang, Journal of Power Sources 414, 2019 (530).

    Article  CAS  Google Scholar 

  31. V. Babic, C. Geers, and I. Panas, Oxidation of Metals 93, 229 (2020).

    Article  CAS  Google Scholar 

  32. X. Hu and N. Qu, Journal of Materials Engineering and Performance 28, 2104 (2019).

    Article  CAS  Google Scholar 

  33. M. Hagarová, D. Jakubéczyová, and J. Cervova, International Journal of Electrochemical Science 10, 9968 (2015).

    Google Scholar 

  34. A. Lahiri, G. Pulletikurthi, F. Endres, Frontiers in Chemistry 7, (2019). https://doi.org/10.3389/fchem.2019.00085

  35. P. Schürch, L. Philippe, Composite Metamaterials: Types and Synthesis, 390 (2021). https://doi.org/10.1016/B978-0-12-803581-8.11750-3

  36. Q. Qi, L. Wang, Y. Liu, and Z. Huang, J. Power Sources 401, 1 (2018).

    Article  CAS  Google Scholar 

  37. K. Liu, et al., Int. J. Hydrogen Energy 44, 30328 (2019).

    Article  CAS  Google Scholar 

  38. P. Paknahad, M. Askari, and M. Ghorbanzadeh, Journal of Power Sources 266, 79 (2014).

    Article  CAS  Google Scholar 

  39. H. S. Maharana and A. Basu, Surface and Coatings Technology 304, 348 (2016).

    Article  CAS  Google Scholar 

  40. Y. Li, S. Geng, and G. Chen, International Journal of Hydrogen Energy 43, 12811 (2018).

    Article  CAS  Google Scholar 

  41. P. F. You, X. Zhang, H. L. Zhang, H. J. Liu, and C. L. Zeng, International Journal of Hydrogen Energy 43, 7492 (2018).

    Article  CAS  Google Scholar 

  42. F. Cheng, J. Cui, L. Wang, S. Li, and S. Juncai, International Journal of Hydrogen Energy 42, 12477 (2017).

    Article  CAS  Google Scholar 

  43. W. J. Shong, C. K. Liu, and P. Yang, Materials Chemistry and Physics 134, 670 (2012).

    Article  CAS  Google Scholar 

  44. F. Saeidpour and H. Ebrahimifar, Corrosion Science 182, 109280 (2021).

    Article  CAS  Google Scholar 

  45. H. Falk-Windisch, M. Sattari, J.-E. Svensson, and J. Froitzheim, Journal of Power Sources 297, 217 (2015).

    Article  CAS  Google Scholar 

  46. J. Froitzheim, H. Ravash, E. Larsson, L. G. Johansson, and J. E. Svensson, Journal of The Electrochemical Society 157, B1295 (2010).

    Article  CAS  Google Scholar 

  47. M. J. Reddy, J.-E. Svensson, and J. Froitzheim, ECS Meeting Abstracts MA2021-03, 268 (2021).

    Article  Google Scholar 

  48. S. Canovic, et al., Surface and Coatings Technology 215, 62 (2013).

    Article  CAS  Google Scholar 

  49. T. Thublaor and S. Chandra-ambhorn, Corrosion Science 174, 108802 (2020).

    Article  CAS  Google Scholar 

  50. B. Talic, et al., Journal of Power Sources 354, 57 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Esfarayen University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Saeidpour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeidpour, F., Khaleghian-Moghadam, R. Ni–Co/ZrO2 Composite Coatings via Electroless Plating on Crofer 22APU for SOFC Interconnect Applications: Oxidation and Chromium Vaporization Behavior. Oxid Met 97, 493–507 (2022). https://doi.org/10.1007/s11085-022-10107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10107-5

Keywords

Navigation