Skip to main content
Log in

Solid-State Deposit-Induced Corrosion of a Second-Generation Nickel-Based Superalloy Caused by CaO and CaSO4 Deposits

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The goal of this research project was to provide a fundamental understanding of CaO-and CaSO4-induced corrosion in second-generation Ni-based single-crystal superalloys and to develop a lab-scale test procedure, which accurately replicates corrosion observed in field-exposed components. Secondary and transmission electron microanalyses were used to characterize the corrosion of field-exposed components taken from commercial aviation turbines. It was found that the field-exposed components had been attacked by internal oxidation-sulfidation. Isothermal laboratory-scale experiments at 900 and 1150 °C in air were conducted on superalloy coupons deposited with either CaO or CaSO4 to assess the extents and modes of solid-state corrosion caused by either deposit. A novel bi-thermal test procedure was then developed which effectively replicated the internal oxidation-sulfidation found in the field-exposed components. It was determined that compositional and microstructural changes to the alloy subsurface caused by CaSO4-induced corrosion at elevated temperatures made the alloy susceptible to internal oxidation at lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. B. A. Pint, High-temperature corrosion in fossil fuel power generation: present and future. JOM 65, 1024 (2013).

    Article  Google Scholar 

  2. D. A. Shifler“The Increasing Complexity of Hot Corrosion,” Journal of Engineering Gas Turbines Power, (2017).

  3. R. A. Rapp, Hot corrosion of materials: a fluxing mechanism? Corrosion science 44, 209 (2002).

    Article  CAS  Google Scholar 

  4. G. H. Meier, Current Aspects of Deposit-Induced Corrosion, (Springer, USA, 2021).

    Google Scholar 

  5. F. Pettit, Hot corrosion of metals and alloys. Oxidation of Metals 76, 1 (2011).

    Article  CAS  Google Scholar 

  6. M. B. Krisak, B. I. Bentley, A. W. Phelps, and T. C. Radsick, Review of calcium sulfate as an alternative cause of hot corrosion. Journal of Propulsion and Power 33, 697 (2017).

    Article  CAS  Google Scholar 

  7. T. J. Nijdam and R. van Gestel, Service experience with single crystal superalloys for high pressure turbine shrouds, Natl. Lucht- en Ruimtevaartlaboratorium. NLR-TP-2011–547, (2010).

  8. J. Stringer and A. J. Minchener, High temperature corrosion in fluidized bed combustion systems. Journal of materials for energy systems 7, 333 (1986).

    Article  CAS  Google Scholar 

  9. J. Stringer and I. G. Wright, Materials issues in fluidized bed combustion. Journal of materials for energy systems 8, 319 (1986).

    Article  CAS  Google Scholar 

  10. K. T. Chiang, G. H. Meier, and R. A. Perkins, The effects of deposits of CaO, CaSO4, and MgO on the oxidation of several Cr2O3-forming and Al2O3-forming alloys. Journal of materials for energy systems 6, 71 (1984).

    Article  CAS  Google Scholar 

  11. K. Jung, “Solid Deposit-Induced High Temperature Oxidation,” University of Pittsburgh, 2008.

  12. T. Gheno, G. H. Meier, and B. Gleeson, High temperature reaction of MCrAlY coating compositions with CaO deposits. Oxidation of Metals 84, 185–209 (2015).

    Article  CAS  Google Scholar 

  13. I. Barin, Thermochemical Data of Pure Substances, 3rd ed. Wiley, 2008.

  14. A. Durga, H. Dai, S. Huang, I. Spinelli, and L. Yuan, Grain structure prediction for directionally solidified superalloy castings. JOM 72, 1785–1793 (2020).

    Article  Google Scholar 

  15. C. F. Beaton, Heat Exchanger Design Handbook. Hemisphere Publishing Corp, 1986.

  16. C. S. Giggins and F. Pettit, Oxidation of Ni-Cr-Al alloys between 1000 and 1200° C. Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  17. K. Y. Jung, F. S. Pettit, and G. H. Meier, The effect of Ca-rich deposits on the high temperature degradation of coated and uncoated superalloys. Materials Science Forum. 595, 805 (2008).

    Article  Google Scholar 

  18. W. M. Swift, A. F. Panek, G. W. Smith, G. J. Vogel, and A. A. Janke, “Decomposition of Calcium Sulfate: a Review of the Literature.” pp. 1–64, 1976.

  19. I. Colussi and V. Longo, La decomposizione termica del solfato di calcio. Il Cemento 2, 75 (1974).

    Google Scholar 

  20. B. M. Mohamed and J. H. Sharp, Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4. Journal of Materials Chemistry 7, 1595 (1997).

    Article  CAS  Google Scholar 

  21. C. Wagner, Reaktionstypen bei der Oxydation von Legierungen. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 63, 772 (1959).

    Article  CAS  Google Scholar 

  22. N. Birks, G. H. Meier, and F. S. Pettit, Introduction To The High Temperature Oxidation of Metals, 2nd ed. Cambridge University Press, 2006.

  23. J. W. Park and C. J. Altstetter, The diffusion and solubility of oxygen in solid nickel. Metallurgical Transactions A 18, 43 (1987).

    Article  Google Scholar 

  24. M. S. A. Karunaratne, P. Carter, and R. C. Reed, On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200 C. Acta materialia 49, 861 (2001).

    Article  CAS  Google Scholar 

  25. W. Zhao and B. Gleeson, Assessment of the detrimental effects of Steam on Al2O3-scale establishment. Oxidation of Metals 83, 607 (2015).

    Article  CAS  Google Scholar 

  26. P. T. Brennan, “Environmental Factors Affecting CaO and CaSO4-Induced Degradation of Second-Generation Nickel-Based Superalloys,” University of Pittsburgh, 2020.

  27. J. A. Goebel and F. S. Pettit, The influence of sulfides on the oxidation behavior of nickel-base alloys. Metallurgical Transactions 1, 3421 (1970).

    CAS  Google Scholar 

  28. B. Schramm and W. Auer, Sulfidation behaviour of nickel aluminides. Material Corrossion 47, 678 (1996).

    Article  CAS  Google Scholar 

  29. C. J. Spengler and R. Viswanathan, Effect of sequential sulfidation and oxidation on the propagation of sulfur in an 85 Ni-15 Cr alloy. Metallurgical and Materials Transactions B 3, 161 (1972).

    Article  CAS  Google Scholar 

  30. J. L. Meijering, Advances in Materials Science. Wiley, 1971.

Download references

Funding

Funding support of this study by the Office of Naval Research (grant N00014-17–1-2916), Dr. David Shifler. Program Manager, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Brennan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennan, P.T., Konitzer, D., Brennan, M. et al. Solid-State Deposit-Induced Corrosion of a Second-Generation Nickel-Based Superalloy Caused by CaO and CaSO4 Deposits. Oxid Met 98, 43–63 (2022). https://doi.org/10.1007/s11085-022-10105-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-022-10105-7

Keywords

Navigation