Skip to main content
Log in

Hot Corrosion Behavior of Cr2AlC MAX Phase Coating on Inconel 738LC Subjected to V2O5 + Na2SO4

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this research work, the in situ Cr2AlC MAX phase was coated on IN-738LC by utilizing the spark plasma sintering operation. The aim of this study was to investigate the hot corrosion behavior of a coating that has been exposed to a mixture of Na2SO4 and V2O5 salts at 900 °C. The XRD pattern indicated the formation of Cr2O3, α–Al2O3 and mixed oxide (Cr, Al)2O3, which suggested formation of Al2O3–Cr2O3 solid solution, on the all of the samples. After being exposed to the salts, plate-like, coral-like, and fractured plate-like morphologies were found with the corrosion products. When the hot corrosion time was increased to 30 h, the oxide layer thickness increased; however, after 40 h, the layer thickness decreased from 50 to 40 µm because of cracks in the sample and spallation of the oxide layer. This was shown by the FESEM images of the sample cross-sectional area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Rajendran, Gas turbine coatings–An overview. Eng Failure Anal 26, 2012 (355–369). https://doi.org/10.1016/j.engfailanal.2012.07.007.

    Article  CAS  Google Scholar 

  2. R. C. Reed, The Superalloys: Fundamentals and Applications, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  3. X. Montero, M. C. Galetz, and M. Schütze, Low-activity aluminide coatings for superalloys using a slurry process free of halide activators and chromates. Surf Coat Technol 222, 2013 (9–14). https://doi.org/10.1016/j.surfcoat.2013.01.033.

    Article  CAS  Google Scholar 

  4. K. Shirvani, S. Firouzi, and A. Rashidghamat, Microstructures and cyclic oxidation behaviour of Pt-free and low-Pt NiAl coatings on the Ni-base superalloy Rene-80. Corrosion Sci 55, 2012 (378–384). https://doi.org/10.1016/j.corsci.2011.10.037.

    Article  CAS  Google Scholar 

  5. Cory Kaplin and Mathieu Brochu, The effect of grain size on the oxidation of NiCoCrAlY. Appl Surface Sci 301, 2014 (258–263). https://doi.org/10.1016/j.apsusc.2014.02.056.

    Article  CAS  Google Scholar 

  6. Per Eklund, et al., The Mn+1AXn phases: materials science and thin-film processing. Thin Solid Films 518, (8), 2010 (1851–1878). https://doi.org/10.1016/j.tsf.2009.07.184.

    Article  CAS  Google Scholar 

  7. M. W. Barsoum, A new class of solids: thermodynamically stable nanolaminates. Prog. Solid State Chem 28, 2000 (201).

    Article  CAS  Google Scholar 

  8. Nikolay V. Tzenov and Michel W. Barsoum, Synthesis and characterization of Ti3AlC2. J Am Ceram Soc 83, (4), 2000 (825–832). https://doi.org/10.1111/j.1151-2916.2000.tb01281.x.

    Article  CAS  Google Scholar 

  9. Ahmed Abdulkadhim, et al., Crystallization kinetics of amorphous Cr2AlC thin films. Surf Coat Technol 206, (4), 2011 (599–603). https://doi.org/10.1016/j.surfcoat.2011.06.003.

    Article  CAS  Google Scholar 

  10. D. E. Hajas, M. to Baben, B. Hallstedt, R. Iskandar, J. Mayer, and J. M. Schneider, Oxidation of Cr2AlC coatings in the temperature range of 1230 to 1410°C. Surf Coat Technol. 206, 2011 (591–598).

    Article  CAS  Google Scholar 

  11. Moritz Baben, et al., Oxygen incorporation in M2AlC (M= Ti, V, Cr). Acta Mater 60, (12), 2012 (4810–4818). https://doi.org/10.1016/j.actamat.2012.05.011.

    Article  CAS  Google Scholar 

  12. J. J. Li, et al., Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment. Appl Surface Sci 263, 2012 (457–464). https://doi.org/10.1016/j.apsusc.2012.09.082.

    Article  CAS  Google Scholar 

  13. J. L. Smialek and S. Gray, Type II hot corrosion screening tests of a Cr2AlC MAX phase compound. Oxid Met 90, 2018 (555–570). https://doi.org/10.1007/s11085-018-9857-2.

    Article  CAS  Google Scholar 

  14. J. L. Smialek, J. A. Nesbitt, T. P. Gabb, A. Garg, and R. A. Miller, Hot corrosion and low cycle fatigue of a Cr2AlC-coated superalloy. Mater Sci Eng: A. 10, (711), 2018 (119–129). https://doi.org/10.1016/j.msea.2017.10.098.

    Article  CAS  Google Scholar 

  15. M. Sokol, et al., Bonding and oxidation protection of Ti2AlC and Cr2AlC for a Ni-based superalloy. J Eur Ceram Soc. 39, (4), 2019 (878–882). https://doi.org/10.1016/j.jeurceramsoc.2018.10.019.

    Article  CAS  Google Scholar 

  16. Jesus Gonzalez-Julian, et al., Cr2AlC MAX phase as bond coat for thermal barrier coatings: processing, testing under thermal gradient loading, and future challenges. J Am Ceram Soc 103, (4), 2020 (2362–2375). https://doi.org/10.1111/jace.16935.

    Article  CAS  Google Scholar 

  17. D. B. Lee and Thuan Dinh Nguyen, Cyclic oxidation of Cr2AlC between 1000 and 1300° C in air. J Alloys Compounds 464, (1–2), 2008 (434–439). https://doi.org/10.1016/j.jallcom.2007.10.018.

    Article  CAS  Google Scholar 

  18. M. S. Doolabi, et al., Hot corrosion behavior and near-surface microstructure of a low-temperature high-activity Cr-aluminide coating on inconel 738LC exposed to Na2SO4, Na2SO4+ V2O5 and Na2SO4+ V2O5+ NaCl at 900° C. Corrosion Sci. 128, 2017 (42–53). https://doi.org/10.1016/j.corsci.2017.09.004.

    Article  CAS  Google Scholar 

  19. Z. J. Lin, M. S. Li, J. Y. Wang, and Y. C. Zhou, High-temperature oxidation and hot corrosion of Cr2AlC. Acta Mater. 55, (18), 2007 (6182–6191). https://doi.org/10.1016/j.actamat.2007.07.024

    Article  CAS  Google Scholar 

  20. M. Hossein-Zadeh, E. Ghasali, O. Mirzaee, H. Mohammadian-Semnani, M. Alizadeh, Y. Orooji, and T. Ebadzadeh, An investigation into the microstructure and mechanical properties of V2AlC MAX phase prepared by microwave sintering. J Alloys Compounds 795, 2019 (291–303). https://doi.org/10.1016/j.jallcom.2019.05.029.

    Article  CAS  Google Scholar 

  21. Bingxin Wang, Aiguo Zhou, Hu. Qianku, and Libo Wang, Synthesis and oxidation resistance of V2AlC powders by molten salt method. Int J Appl Ceram Technol 14, (5), 2017 (873–879). https://doi.org/10.1111/ijac.12723.

    Article  CAS  Google Scholar 

  22. Jesus Gonzalez-Julian, Processing of MAX phases: from synthesis to applications. J Am Ceram Soc 104, (2), 2021 (659–690). https://doi.org/10.1111/jace.17544.

    Article  CAS  Google Scholar 

  23. J. L. Smialek, Oxygen diffusivity in alumina scales grown on Al-MAX phases. Corrosion Sci 91, 2015 (281–286). https://doi.org/10.1016/j.corsci.2014.11.030.

    Article  CAS  Google Scholar 

  24. Carl Magnus, Daniel Cooper, Craig Jantzen, Hugues Lambert, Tim Abram, and Mark Rainforth, Synthesis and high temperature corrosion behaviour of nearly monolithic Ti3AlC2 MAX phase in molten chloride salt. Corrosion Sci 182, 2021 109193. https://doi.org/10.1016/j.corsci.2020.109193.

    Article  CAS  Google Scholar 

  25. Zhijun Lin, Yanchun Zhou, Meishuan Li, and Jingyang Wang, Hot corrosion and protection of Ti2AlC against Na2SO4 salt in air. J Eur Ceram Soc 26, (16), 2006 (3871–3879). https://doi.org/10.1016/j.jeurceramsoc.2005.12.004.

    Article  CAS  Google Scholar 

  26. R. C. Kerby and J. R. Wilson, Solid–liquid phase equilibria for the ternary systems V2O5–Na2O–Fe2O3, V2O5–Na2O–Cr2O3, and V2O5–Na2O–MgO. Canadian J Chem. 51, (7), 1973 (1032–1040). https://doi.org/10.1139/v73-153.

    Article  CAS  Google Scholar 

  27. A. Rahman, R. Jayaganthan, R. Chandra, and R. Ambardar, Microstructural characterization and cyclic hot corrosion behaviour of sputtered Co–Al nanostructured coatings on superalloy. Oxidation Metals 76, (3), 2011 (307–330). https://doi.org/10.1007/s11085-011-9257-3.

    Article  CAS  Google Scholar 

  28. M. Mohammadi, S. A. J. Jahromi, S. Javadpour, A. Kobayashi, and K. Shirvani, KHot corrosion behavior and microstructural change of Al-gradient CoNiCrAlYSi coatings, produced by LVPS and diffusional processes. Oxidation Metals 78, (1), 2012 (17–30). https://doi.org/10.1007/s11085-012-9288-4.

    Article  CAS  Google Scholar 

  29. S. M. Mohammadi Jiang, H. Q. Li, J. Ma, C. Z. Xu, J. Gong, and C. Sun, High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating II: oxidation and hot corrosion. Corrosion Sci 52, (7), 2010 (2316–2322). https://doi.org/10.1016/j.corsci.2010.03.032.

    Article  CAS  Google Scholar 

  30. G. Sreedhar and V. S. Raja, Hot corrosion of YSZ/α-Al2O3 dispersed NiCrAlY plasma-sprayed coatings in Na2SO4–10 wt% NaCl melt. Corrosion Sci 52, (8), 2010 (2592–2602). https://doi.org/10.1016/j.corsci.2010.04.007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Ghasemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakeri-Shahroudi, F., Ghasemi, B., Abdolahpour, H. et al. Hot Corrosion Behavior of Cr2AlC MAX Phase Coating on Inconel 738LC Subjected to V2O5 + Na2SO4. Oxid Met 97, 359–369 (2022). https://doi.org/10.1007/s11085-021-10097-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10097-w

Keywords

Navigation