Skip to main content
Log in

Hot Corrosion Behavior of Micro- and Nanostructured Thermal Barrier Coatings: Conventional Bilayer and Compositionally Graded Layer YSZ

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Hot corrosion is one of the main destructive factors against thermal barrier coatings (TBCs) applied on gas turbine hot components. In this study, hot corrosion behavior of conventional bilayer and compositionally graded layer (CGL) TBCs in two different micro- and nanostructures was evaluated. For this purpose, nanostructured and micro-Y2O3-stabilized ZrO2 (YSZ) were used as ceramic powder feedstocks. NiCrAlY metallic bond coat was deposited on IN-738LC nickel-based superalloy by air plasma spray (APS). Two groups of compositionally graded layer TBCs consisting three layers of NiCrAlY and YSZ in the weight ratios of 100:0 (bond coat), 50:50 (gradient layer) and 0:100 (top coat) were prepared by air plasma spraying. In one group of CGL-TBCs, micro-YSZ feedstock was used, and in the other one, nanostructured YSZ feedstock was used. Bilayer TBCs consisted of two layers (bond coat and top coat). Micro-YSZ and nanostructured YSZ powder feedstocks were applied for conventional and nanostructured bilayer TBCs, respectively. Hot corrosion studies were performed on the surface of the mentioned four TBC groups in the presence of molten mixture of V2O5 + Na2SO4 at 900 °C for eight-hour cycles. At each cycle, salt concentration of 4 mg/cm2 was used. Microstructural evaluation, elemental and phase analysis were performed using field emission scanning electron microscopy (FE–SEM) and X-ray diffraction (XRD). Based on the results, the hot corrosion resistance of nanostructured bilayer TBC was improved by 2.5 times compared with that of micro one. Furthermore, compositionally graded layer TBCs exhibited superior corrosion resistance compared to the bilayer TBCs. It was also revealed that applying gradient layer TBC compared with nanostructured bilayer, one has greater effect on increasing the hot corrosion resistance of conventional bilayer TBC. Moreover, a combination of compositionally graded layer and nanostructure TBCs resulted in higher corrosion resistance. In addition, hot corrosion mechanisms of nanostructured and micro-TBCs were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Bose, High temperature coatings, Butterworth-Heinemann, 2017.

  2. A. K. Ray and B. Goswami, Applications of thermal barrier coating system in gas turbines-A review. Journal of Metallurgy and materials Science 46, 2004 (1).

    CAS  Google Scholar 

  3. N. P. Padture, M. Gell, and E. H. Jordan, Thermal barrier coatings for gas-turbine engine applications. Science 296, 2002 (280). https://doi.org/10.1126/science.1068609.

    Article  CAS  Google Scholar 

  4. Q. Liu, S. Huang, and A. He, Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of Materials Science & Technology 35, 2019 (2814). https://doi.org/10.1016/j.jmst.2019.08.003.

    Article  Google Scholar 

  5. V. Sankar, P. Ramkumar, D. Sebastian, D. Joseph, J. Jose, and A. Kurian, Optimized thermal barrier coating for gas turbine blades. Materials Today: Proceedings 11, 2019 (912). https://doi.org/10.1016/j.matpr.2018.12.018.

    Article  Google Scholar 

  6. S. Tailor, R. Upadhyaya, S. Manjunath, A. Dub, A. Modi, and S. Modi, Atmospheric plasma sprayed 7%-YSZ thick thermal barrier coatings with controlled segmentation crack densities and its thermal cycling behavior. Ceramics International 44, 2018 (2691). https://doi.org/10.1016/j.ceramint.2017.10.219.

    Article  CAS  Google Scholar 

  7. J. de la Roche, P. A. Gómez, J. M. Alvarado-Orozco, and A. Toro, Hot corrosion and thermal shock resistance of Dense-CYSZ/YSZ bilayer thermal barrier coatings systems applied onto Ni-base superalloy. Journal of the European Ceramic Society 40, 2020 (5692). https://doi.org/10.1016/j.jeurceramsoc.2020.07.004.

    Article  CAS  Google Scholar 

  8. D. Tejero-Martin, M. R. Rad, A. McDonald, and T. Hussain, Beyond traditional coatings: A review on thermal-sprayed functional and smart coatings. Journal of Thermal Spray Technology 28, 2019 (598). https://doi.org/10.1007/s11666-019-00857-1.

    Article  CAS  Google Scholar 

  9. F. Kirbiyik, M. G. Gok, and G. Goller, Microstructural, mechanical and thermal properties of Al2O3/CYSZ functionally graded thermal barrier coatings. Surface and Coatings Technology 329, 2017 (193). https://doi.org/10.1016/j.surfcoat.2017.08.025.

    Article  CAS  Google Scholar 

  10. M. Hatami, F. Naeimi, M. Shamanian, and M. Tahari, High-Temperature Oxidation Behavior of Nano-structured CoNiCrAlY–YSZ Coatings Produced by HVOF Thermal Spray Technique. Oxidation of Metals 90, 2018 (153). https://doi.org/10.1007/s11085-017-9829-y.

    Article  CAS  Google Scholar 

  11. A. Thibblin, S. Jonsson, and U. Olofsson, Influence of microstructure on thermal cycling lifetime and thermal insulation properties of yttria-stabilized zirconia thermal barrier coatings for diesel engine applications. Surface and Coatings Technology 350, 2018 (1). https://doi.org/10.1016/j.surfcoat.2018.07.005.

    Article  CAS  Google Scholar 

  12. F. Zhou, Y. Wang, L. Wang, Z. Cui, and Z. Zhang, High temperature oxidation and insulation behavior of plasma-sprayed nanostructured thermal barrier coatings. Journal of Alloys and Compounds 704, 2017 (614). https://doi.org/10.1016/j.jallcom.2017.02.073.

    Article  CAS  Google Scholar 

  13. X. H. Zhong, Y. M. Wang, Z. H. Xu, Y. F. Zhanga, J. F. Zhang and X. Q. Cao, Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate-sulfate salts. Journal of the European ceramic society 30, 2010 (1401). https://doi.org/10.1016/j.jeurceramsoc.2009.10.017.

  14. S. M. Afrasiabi, Kobayashi, A comparative study on hot corrosionresistance of three types of thermal barrier coatings: YSZ, YSZ+Al2O3 and YSZ/Al2O3. Materials Science and Engineering: A 478, 2008 (264). https://doi.org/10.1016/j.msea.2007.06.001.

    Article  CAS  Google Scholar 

  15. T. S. Sidhu, R. D. Agrawal, and S. Prakash, Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings—a review. Surface and Coatings Technology 198, 2005 (441). https://doi.org/10.1016/j.surfcoat.2004.10.056.

    Article  CAS  Google Scholar 

  16. A. Keyvani, M. Saremi, and M. H. Sohi, Microstructural stability of zirconia – alumina composite coating during hot corrosion test. Journal of Alloys and Compounds 506, 2010 (103). https://doi.org/10.1016/j.jallcom.2010.06.110.

    Article  CAS  Google Scholar 

  17. D. Stöver, G. Pracht, H. Lehmann, M. Dietrich, J. E. Döring, and R. Vaßen, New material concepts for the next generation of plasma-sprayed thermal barrier coatings. Journal of thermal spray Thechnology 13, 2004 (76). https://doi.org/10.1007/s11666-004-0052-4.

    Article  Google Scholar 

  18. B. Yildirim and F. Erdogan, Edge crack problems in homogenous and functionally graded material thermal barrier coatings under uniform thermal loading. Journal of Thermal Stresses 27, 2004 (311). https://doi.org/10.1080/01495730490427564.

    Article  Google Scholar 

  19. Z. Negahdari, M. Willert-Porada, and F. Scherm, Development of novel functionally graded Al2O3-lanthanum hexaaluminate ceramics for thermal barrier coatings. Materials Science Forum, Trans Tech Publ 631–632, 2010 (97).

    Google Scholar 

  20. S. C. Joshi and H. W. Ng, Optimizing functionally graded nickel–zirconia coating profiles for thermal stress relaxation. Simulation Modelling Practice and Theory 19, 2011 (586). https://doi.org/10.1016/j.simpat.2010.08.013.

    Article  Google Scholar 

  21. S. Nath, I. Manna, and J. D. Majumdar, Kinetics and mechanism of isothermal oxidation of compositionally graded yttria stabilized zirconia (YSZ) based thermal barrier coating. Corrosion Science 88, 2014 (10). https://doi.org/10.1016/j.corsci.2014.06.050.

    Article  CAS  Google Scholar 

  22. S. Nath, I. Manna, and J. D. Majumdar, Compositionally graded thermal barrier coating by hybrid thermal spraying route and its non-isothermal oxidation behavior. Journal of thermal spray technology 22, 2013 (901). https://doi.org/10.1007/s11666-013-9937-4.

    Article  CAS  Google Scholar 

  23. K. Khor and Y. Gu, Thermal properties of plasma-sprayed functionally graded thermal barrier coatings. Thin Solid Films 372, 2000 (104). https://doi.org/10.1016/S0040-6090(00)01024-5.

    Article  CAS  Google Scholar 

  24. S. Widjaja, A. M. Limarga, and T. H. Yip, Oxidation behavior of a plasma-sprayed functionally graded ZrO2/Al2O3 thermal barrier coating. Materials Letters 57, 2002 (628). https://doi.org/10.1016/S0167-577X(02)00842-X.

    Article  CAS  Google Scholar 

  25. H. Xu, H. Guo, F. Liu, and S. Gong, Development of gradient thermal barrier coatings and their hot-fatigue behavior. Surface and Coatings Technology 130, 2000 (133). https://doi.org/10.1016/S0257-8972(00)00695-2.

    Article  CAS  Google Scholar 

  26. A. Kawasaki and R. Watanabe, Thermal fracture behavior of metal/ceramic functionally graded materials. Engineering Fracture Mechanics 69, 2002 (1713). https://doi.org/10.1016/S0013-7944(02)00054-1.

    Article  Google Scholar 

  27. M. Rahnavard, M. Ostad Ahmad Ghorabi, and H. Rafiee, Comparison of hot corrosion behaviour of FGM and usual TBCs. Surface Engineering 33, 2017 (444). https://doi.org/10.1080/02670844.2016.1219106.

  28. A. Pakseresht, A. Javadi, E. Ghasali, A. Shahbazkhan, and S. Shakhesi, Evaluation of hot corrosion behavior of plasma sprayed thermal barrier coatings with graded intermediate layer and double ceramic top layer. Surface and Coatings Technology 288, 2016 (36). https://doi.org/10.1016/j.surfcoat.2016.01.012.

    Article  CAS  Google Scholar 

  29. H. Jamali, R. Mozafarinia, R. Shoja-Razavi, and R. Ahmadi-Pidani, comparison of hot corrosion behaviors of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings exposure to molten vanadiumpentoxide and sodium sulfate. Journal of the European Ceramic Society 34, 2014 (485). https://doi.org/10.1016/j.jeurceramsoc.2013.08.006.

    Article  CAS  Google Scholar 

  30. G. Li and G. Yang, Understanding of degradation-resistant behavior of nanostructured thermal barrier coatings with bimodal structure. Journal of materials science & technology 35, 2019 (231). https://doi.org/10.1016/j.jmst.2018.09.054.

    Article  Google Scholar 

  31. C. H. Zhou, Z. Y. Zhang, Q. M. Zhang, and Y. Li, Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings. Materials and Corrosion 65, 2014 (613). https://doi.org/10.1002/maco.201206571.

    Article  CAS  Google Scholar 

  32. R. S. Lima and B. R. Marple, Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. Journal of Thermal Spray Technology 16, 2007 (40). https://doi.org/10.1007/s11666-006-9010-7.

    Article  CAS  Google Scholar 

  33. R.S. Lima and B.R. Marple, Toward highly sintering-resistant nanostructured ZrO2–7wt.% Y2O3 coatings for TBC applications by employing differential sintering. Journal of Thermal Spray Technology 17, 2008 (846). https://doi.org/10.1007/s11666-008-9217-x.

  34. Lei Guo, Mingzhu Li, Sixian He, Chenglong Zhang, and Qi. Wang, Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings. Journal of alloys and compounds 698, 2017 (13). https://doi.org/10.1016/j.jallcom.2016.12.241.

    Article  CAS  Google Scholar 

  35. A. Keyvani, M. Sohi, Z. Valfi, M. Yeganeh, and A. Kobayashi, Microstructural stability of nanostructured YSZ–alumina composite TBC compared to conventional YSZ coatings by means of oxidation and hot corrosion tests. Journal of alloys and compounds 600, 2014 (151). https://doi.org/10.1016/j.jallcom.2014.02.004.

    Article  CAS  Google Scholar 

  36. M. Loghman-Estarki, R. S. Razavi, H. Edris, S. Bakhshi, M. Nejati, and H. Jamali, Comparison of hot corrosion behavior of nanostructured ScYSZ and YSZ thermal barrier coatings. Ceramics international 42, 2016 (7432). https://doi.org/10.1016/j.ceramint.2016.01.147.

    Article  CAS  Google Scholar 

  37. J. Wang, J. Sun, B. Zou, X. Zhou, S. Dong, L. Li, J. Jiang, L. Deng, and X. Cao, Hot corrosion behaviour of nanostructured zirconia in molten NaVO3 salt. Ceramics International 43, 2017 (10415). https://doi.org/10.1016/j.ceramint.2017.05.077.

    Article  CAS  Google Scholar 

  38. H. Vakilifard, R. Ghasemi, and M. Rahimipour, Hot corrosion behaviour of plasma-sprayed functionally graded thermal barrier coatings in the presence of Na2SO4+ V2O5 molten salt. Surface and Coatings Technology 326, 2017 (238). https://doi.org/10.1016/j.surfcoat.2017.07.058.

    Article  CAS  Google Scholar 

  39. A. Sezavar, S. A. Sajjadi, A. Babakhani, and R. L. Peng, Thermal Cyclic Fatigue Behavior of Nanostructured YSZ/NiCrAlY Compositionally Graded Thermal Barrier Coatings. Oxidation of Metals 92, 2019 (89). https://doi.org/10.1007/s11085-019-09915-z.

    Article  CAS  Google Scholar 

  40. A. Sezavar, S. A. Sajjadi, A. Babakhani, R. L. Peng, and K. Yuan, Oxidation behavior of a nanostructured compositionally graded layer (CGL) thermal barrier coating (TBC) deposited on IN-738LC. Surface and Coatings Technology 374, 2019 (374). https://doi.org/10.1016/j.surfcoat.2019.06.024.

    Article  CAS  Google Scholar 

  41. N. Mifune, Y. Harada, T. Doi, and R. Yamasaki, Hot-corrosion behavior of graded thermal barrier coatings formed by plasma-spraying process. Journal of Thermal Spray Technology 13, 2004 (561). https://doi.org/10.1361/10599630421497.

    Article  CAS  Google Scholar 

  42. K. P. Jonnalagadda, R. Eriksson, R. Peng, X.-H. Li, and S. Johansson, Factors Affecting the Performance of Thermal Barrier Coatings in the Presence of V2O5 and Na2SO4. Journal of Ceramic Science and Technology 7, 2016 (409). https://doi.org/10.4416/JCST2016-00058.

    Article  Google Scholar 

  43. R. Vaßen, F. Traeger, and D. Stöver, Correlation between spraying conditions and microcrack density and their influence on thermal cycling life of thermal barrier coatings. Journal of thermal spray technology 13, 2004 (396). https://doi.org/10.1361/10599630420443.

    Article  CAS  Google Scholar 

  44. Y. Hui, S. Zhao, J. Xu, B. Zou, Y. Wang, X. Cai, L. Zhu, and X. Cao, High-temperature corrosion behavior of zirconia ceramic in molten Na2SO4+ NaVO3 salt mixture. Ceramics International 42, 2016 (341). https://doi.org/10.1016/j.ceramint.2015.08.116.

    Article  CAS  Google Scholar 

  45. Y. Wang and C. Zhou, Hot corrosion behavior of nanostructured Gd2O3 doped YSZ thermal barrier coating in presence of Na2SO4+ V2O5 molten salts. Progress in Natural Science: Materials International 27, 2017 (507). https://doi.org/10.1016/j.pnsc.2017.06.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Ferdowsi University of Mashhad (FUM) under the research scheme No. 3/39124 and also Linkoping university.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Sajjadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezavar, A., Sajjadi, S.A., Babakhani, A. et al. Hot Corrosion Behavior of Micro- and Nanostructured Thermal Barrier Coatings: Conventional Bilayer and Compositionally Graded Layer YSZ. Oxid Met 96, 469–486 (2021). https://doi.org/10.1007/s11085-021-10058-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10058-3

Keywords

Navigation