Skip to main content
Log in

In Situ Measurement of Electrical Behavior of Metal/Oxide System During Zirconium Oxidation at 850 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Comprehension of oxidation processes under the influence of an external polarization is still a challenge, despite numerous past studies. In this study, thermogravimetric analysis technique coupled with in situ application of an electric voltage was used to investigate oxidation of zirconium. The first technical challenge was to modify the thermobalance to integrate it with polarization equipment without perturbation of measurement and of oxidation behavior. Surprisingly, the oxidation rate was found to remain independent on the applied voltage, despite a large range of applied potentials, ± 200 V. Modeling of oxidation rates according to diffusion mechanism combined with investigation of polarization curves of the metal/oxide/electrode system has shown that a high electrical resistance appears at the oxide/electrode interface, even with addition of an intermediate gold layer. This resistance prevents from generating sufficient voltage drop through the oxide layer (> 10 V), necessary to modify the kinetics. Nevertheless, meaningful electrochemical properties using analogy with solid-oxide fuel cells have been observed, allowing to propose a comprehensive approach of oxidation phenomena under polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Raw data of the present study will be made available on demand.

References

  1. X. Li, J. Zhang, Y. Yuan, L. Liao, and C. Pan, Effect of electric field on CuO nanoneedle growth during thermal oxidation and its growth mechanism, Journal of Applied Physics 024308, 108 (2010). https://doi.org/10.1063/1.3460635.

    Article  CAS  Google Scholar 

  2. K. Kawamura, T. Nitobe, H. Kurokawa, M. Ueda, and T. Maruyama, Effect of electric current on growth of oxide scale on Fe–25Cr alloy for SOFC interconnect at 1073 K, Journal of the Electrochemical Society 159(3), B259 (2012). https://doi.org/10.1149/2.036203jes.

    Article  CAS  Google Scholar 

  3. T. Saunders, S. Grasso and M. J. Reece, Limiting oxidation of ZrB2 by application of an electric field across its oxide scale, Journal of Alloys and Compounds 653, 629 (2015). https://doi.org/10.1016/j.jallcom.2015.08.112.

    Article  CAS  Google Scholar 

  4. P. J. Jorgensen, Effect of an electric field on the oxidation of zinc, Journal of Electrochemical Society 110, 461 (1963). https://doi.org/10.1149/1.2425787.

    Article  CAS  Google Scholar 

  5. P. J. Jorgensen, Effect of an electric field on silicon oxidation, Journal of Chemical Physics 37, 874 (1962). https://doi.org/10.1063/1.1733177.

    Article  CAS  Google Scholar 

  6. J. K. Hinze, in The Effect of Applied Electric Fields on Diffusion-Controlled Scaling Kinetics, Ph.D. thesis (Iowa State University, USA, 1973).

  7. M. Ritchie, G. H. Scott, and P. J. Fensham, The effect of an electric field on the oxidation rate of Nickel between 250 and 380 °C, Surface Science 19, 230 (1970). https://doi.org/10.1016/0039-6028(70)90121-4.

    Article  CAS  Google Scholar 

  8. S. K. Roy, V. Ananth, and S. K. Bose, Oxidation behavior of copper at high temperatures under two different modes of direct-current applications, Oxidation of Metals 43(3/4), 185 (1995).

    Article  CAS  Google Scholar 

  9. G. Lawless and C. A. Lombard, The effect of a static electric field on the oxidation of certain metals, Technical Report AFML-TR-65-412 (US Air Force, 1966).

  10. H. H. Uhlig and A. E. Brenner, Effect of electric field on oxidation of copper, Acta Metallurgica 3, 108 (1955). https://doi.org/10.1016/0001-6160(55)90029-8.

    Article  Google Scholar 

  11. N. Parkansky, B. Alterkop, S. Goldsmith, R. L. Boxman, and Z. Barkay, Thermal air oxidation of copper in an applied electric field, Surface and Coatings Technology 146–147, 13–18 (2001). https://doi.org/10.1016/S0257-8972(01)01466-9.

    Article  Google Scholar 

  12. N. Parkansky, G. Shalev, B. Alterkop, S. Goldsmith, R. L. Boxman, Z. Barkay, L. Glikman, H. Wulff, and M. Quaas, Growth of ZnO nanorods by air annealing of ZnO films with an applied electric field, Surface & Coatings Technology 201, 2844–2848 (2006). https://doi.org/10.1016/j.surfcoat.2006.05.032.

    Article  CAS  Google Scholar 

  13. A. V. Shishkin, M. Y. Sokol, and A. A. Vostrikov, Effect of electric field on oxide layer structure at zirconium oxidation in H2O, CO2 and H2O/CO2 supercritical fluids, Journal of Physics: Conference Series 1382, 012144 (2019). https://doi.org/10.1088/1742-6596/1382/1/012144.

    Article  CAS  Google Scholar 

  14. Y. Dali, M. Tupin, P. Bossis, M. Pijolat, Y. Wouters, and F. Jomard, Corrosion kinetics under high pressure of steam of pure zirconium and zirconium alloys followed by in situ thermogravimetry, Journal of Nuclear Materials 426, 148 (2012). https://doi.org/10.1016/j.jnucmat.2012.03.030.

    Article  CAS  Google Scholar 

  15. M. Tupin, M. Pijolat, F. Valdivieso, M. Soustelle, A. Frichet, and P. Barberis, Differences in reactivity of oxide growth during the oxidation of Zircaloy-4 in water vapour before and after the kinetic transition, Journal of Nuclear Materials 317, 130 (2003). https://doi.org/10.1016/S0022-3115(02)01704-X.

    Article  CAS  Google Scholar 

  16. I. Idarraga, M. Mermoux, C. Duriez, A. Crisci, and J. P. Mardon, Raman investigation of pre- and post-breakaway oxide scales formed on Zircaloy-4 and M5® in air at high temperature, Journal of Nuclear Materials 421, 160 (2012). https://doi.org/10.1016/j.jnucmat.2011.11.071.

    Article  CAS  Google Scholar 

  17. M. Lasserre, V. Peres, M. Pijolat, O, Coindreau, C. Duriez, and J. P. Mardon, Modelling of Zircaloy-4 accelerated degradation kinetics in nitrogen–oxygen mixtures at 850 °C, Journal of Nuclear Materials 462, 221 (2015). https://doi.org/10.1016/j.jnucmat.2015.03.052.

    Article  CAS  Google Scholar 

  18. M. Steinbrück, Oxidation of zirconium alloys in oxygen at high temperatures up to 1600 °C, Oxidation of Metals 70, 317–329 (2008). https://doi.org/10.1007/s11085-008-9124-z.

    Article  CAS  Google Scholar 

  19. A. T Fromhold, Parabolic oxidation of metals in homogeneous electric fields, Journal of Physics and Chemistry of Solids 33, 95–120 (1972).

    Article  CAS  Google Scholar 

  20. B. Cox, Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys, Journal of Nuclear Materials 336, 331 (2005). https://doi.org/10.1016/j.jnucmat.2004.09.029.

    Article  CAS  Google Scholar 

  21. V. V. Kharton et al., Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. I. ZrO2-based ceramic materials, Journal of Solid State Electrochemistry 3, 61 (1999). https://doi.org/10.1007/s100080050131.

    Article  CAS  Google Scholar 

  22. M. de Ridder et al., Oxygen exchange and diffusion in the near surface of pure and modified yttria-stabilised zirconia, Solid State Ionics 158, 67 (2003). https://doi.org/10.1016/S0167-2738(02)00759-2.

    Article  CAS  Google Scholar 

  23. P. S. Manning, J. D. Sirman, R. A. De Souza, and J. Kilner, The kinetics of oxygen transport in 9.5 mol % single crystal yttria stabilised zirconia, Solid State Ionics 100, 1 (1997). https://doi.org/10.1016/s0167-2738(97)00345-7.

    Article  CAS  Google Scholar 

  24. N. Sakai et al., Transport properties of ceria–zirconia–yttria solid solutions {(CeO2)x(ZrO2)1−x}1−y(YO1.5)y (x = 0–1, y = 0.2, 0.35), Journal of Alloys and Compounds 408–412, 503 (2006). https://doi.org/10.1016/j.jallcom.2004.12.088.

    Article  CAS  Google Scholar 

  25. A. Kasperski, C. Duriez, and M. Mermoux, Combined Raman imaging and 18O tracer analysis for the study of Zircaloy-4 high-temperature oxidation in spent fuel pool accident, in STP1597-EB Zirconium in the Nuclear Industry: 18th International Symposium (ASTM International, West Conshohocken, PA, 2018), pp. 1059–1092. https://doi.org/10.1520/stp159720160037.

  26. X. Ma, C. Toffolon-Masclet, T. Guilbert, D. Hamon, and J. C. Brachet, Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523 K, Journal of Nuclear Materials 377(2), 359–369 (2008). https://doi.org/10.1016/j.jnucmat.2008.03.012.

    Article  CAS  Google Scholar 

  27. M. Howlader et al., In situ measurement of electrical conductivity of Zircaloy oxides and their formation mechanism under electron irradiation, Journal of Nuclear Materials 265, 100–107 (1999). https://doi.org/10.1016/S0022-3115(98)00609-6.

    Article  CAS  Google Scholar 

Download references

Funding

The funding was provided by Mines Saint-Etienne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Viricelle.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, J.C., Breuil, P. & Viricelle, JP. In Situ Measurement of Electrical Behavior of Metal/Oxide System During Zirconium Oxidation at 850 °C. Oxid Met 95, 65–83 (2021). https://doi.org/10.1007/s11085-020-10009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-10009-4

Keywords

Navigation