Skip to main content
Log in

Comparison of High-Temperature Corrosion Behavior of a FeCrAl Anode Current Collector in Liquid Ag and O2 for the Solid Oxide Membrane Electrolysis Process

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The high-temperature corrosion behavior of anode current collectors in liquid Ag under an oxidizing atmosphere was investigated. The weight gain in oxygen was higher than that of liquid Ag because of the effective barrier formed by Ag-rich layer coated on the corrosion layer. The thickness of the corrosion layer under oxygen was approximately twice that of the layer developed under liquid Ag because of the effective barrier originating from the Ag-rich layer. The corrosion products on the surface of the specimens in both oxygen and liquid Ag were Al2O3 and FeAl2O4 from 24 to 168 h. The surface morphology that was developed on the scale of the corroded layer represented a buckle structure in liquid Ag and a convoluted structure in oxygen, which resulted from the lateral growth of the oxide. This study proved the improved stability and cost-effectiveness of using FeCrAl alloy as a current collector in a solid oxide membrane system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. M. Gao, B. Wang, S. B. Wang, and S. Peng, Journal of Mining and Metallurgy Section B Metallurgy 49, 49 (2013). https://doi.org/10.2298/JMMB120112036G.

    Article  CAS  Google Scholar 

  2. A. Aytimur, I. Uslu, S. Kocyigit, and F. Ozcan, Ceramic International 38, 3851 (2012). https://doi.org/10.1016/j.ceramint.2012.01.035.

    Article  CAS  Google Scholar 

  3. S. Das, JOM Journal of the Minerals Metals and Materials Society 60, 63 (2008). https://doi.org/10.1007/s11837-008-0151-7.

    Article  CAS  Google Scholar 

  4. D. J. L. Brett, A. Atkinson, N. P. Brandon, and S. J. Skinner, Chemical Society Reviews 37, 1568 (2008). https://doi.org/10.1039/B612060C.

    Article  CAS  Google Scholar 

  5. A. Krishnan, X. G. Lu, and U. B. Pal, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 36, 463 (2005). https://doi.org/10.1007/s11663-005-0037-9.

    Article  Google Scholar 

  6. U. B. Pal, D. E. Woolley, and G. B. Kenney, JOM Journal of the Minerals Metals and Materials Society 53, 32 (2001). https://doi.org/10.1007/s11837-001-0053-4.

    Article  CAS  Google Scholar 

  7. S. Selvasekarapandian, M. S. Bhuvaneswari, M. Vijayakumar, C. S. Ramya, and P. C. Angelo, Journal of the European Ceramic Society 25, 2573 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.104.

    Article  CAS  Google Scholar 

  8. S. Li, X. Zou, K. Zheng, X. Lu, Q. Xu, C. Chen, and X. Zhou, Journal of Alloys and Compounds 727, 1243 (2017). https://doi.org/10.1016/j.jallcom.2017.08.213.

    Article  CAS  Google Scholar 

  9. X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding, and Z. Zhou, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science 43, 503 (2012). https://doi.org/10.1007/s11663-012-9633-7.

    Article  CAS  Google Scholar 

  10. X. Zou, X. Lu, Z. Zhou, C. Li, and W. Ding, Electrochimica Acta 56, 8430 (2011). https://doi.org/10.1016/j.electacta.2011.07.026.

    Article  CAS  Google Scholar 

  11. B. Zhao, X. Lu, Q. Zhong, C. Li, and S. Chen, Electrochimica Acta 55, 2996 (2010). https://doi.org/10.1016/j.electacta.2010.01.008.

    Article  CAS  Google Scholar 

  12. X. Guan and U. B. Pal, Progress in Natural Science: Materials 25, 591 (2015). https://doi.org/10.1016/j.pnsc.2015.11.004.

    Article  CAS  Google Scholar 

  13. S. Su, U. B. Pal, and X. Guan, Journal of the Electrochemical Society 164, F248 (2017). https://doi.org/10.1149/2.0571704jes.

    Article  CAS  Google Scholar 

  14. X. Guan, U. B. Pal, Y. Jiang, and S. Su, Journal of Sustainable Metallurgy 2, 152 (2016). https://doi.org/10.1007/s40831-016-0044-x.

    Article  Google Scholar 

  15. U. B. Pal and A. C. Powell IV, JOM Journal of the Minerals Metals and Materials Society 59, 44 (2007). https://doi.org/10.1007/s11837-007-0064-x.

    Article  CAS  Google Scholar 

  16. X. Zou, X. Lu, C. Li, and Z. Zhou, Electrochimica Acta 55, 5173 (2010). https://doi.org/10.1016/j.electacta.2010.04.032.

    Article  CAS  Google Scholar 

  17. X. Su, X. G. Lu, C. H. Li, W. Z. Ding, X. L. Zou, Y. H. Gao, and Q. D. Zhong, International Journal of Hydrogen Energy 36, 4573 (2011). https://doi.org/10.1016/j.ijhydene.2010.04.098.

    Article  CAS  Google Scholar 

  18. U. B. Pal, JOM Journal of the Minerals Metals and Materials Society 60, 43 (2008). https://doi.org/10.1007/s11837-008-0017-z.

    Article  CAS  Google Scholar 

  19. A. Martin, D. Lambertin, J. C. Poignet, M. Allibert, G. Bourges, L. Pescayre, and J. Fouletier, JOM Journal of the Minerals Metals and Materials Society 55, 52 (2003). https://doi.org/10.1007/s11837-003-0177-9.

    Article  CAS  Google Scholar 

  20. A. Allanore, L. Yin, and D. R. Sadoway, Nature 497, 353 (2013). https://doi.org/10.1038/nature12134.

    Article  CAS  Google Scholar 

  21. G. Z. Chen, D. J. Fray, and T. W. Farthing, Nature 407, 361 (2000). https://doi.org/10.1038/35030069.

    Article  CAS  Google Scholar 

  22. F. A. Golightly, F. H. Stott, and G. C. Wood, Oxidation of Metals 10, 163 (1976). https://doi.org/10.1007/BF01046725.

    Article  CAS  Google Scholar 

  23. E. A. Gulbransen and K. F. Andrew, Journal of the Electrochemical Society 106, 294 (1959). https://doi.org/10.1149/1.2427333.

    Article  CAS  Google Scholar 

  24. G. C. Wood, M. G. Richardson, M. G. Hobby, and J. Boustead, Corrosion Science 9, 659 (1969). https://doi.org/10.1016/S0010-938X(02)00254-8.

    Article  CAS  Google Scholar 

  25. J. Lim, H. O. Nam, I. S. Hwang, and J. H. Kim, Journal of Nuclear Materials 407, 205 (2010). https://doi.org/10.1016/j.jnucmat.2010.10.018.

    Article  CAS  Google Scholar 

  26. J. Lim, I. S. Hwang, and J. H. Kim, Journal of Nuclear Materials 441, 650 (2013). https://doi.org/10.1016/j.jnucmat.2012.04.006.

    Article  CAS  Google Scholar 

  27. R. Cueff, H. Buscail, E. Caudron, C. Issartel, and F. Riffard, Corrosion Science 45, 1815 (2003). https://doi.org/10.1016/S0010-938X(02)00254-8.

    Article  CAS  Google Scholar 

  28. E. H. Yang, J. K. Lee, J. S. Lee, Y. S. Ahn, G. H. Kang, and C. H. Cho, Hydrometallurgy 167, 129 (2017). https://doi.org/10.1016/j.hydromet.2016.11.005.

    Article  CAS  Google Scholar 

  29. Roine, A. HSC Chemistry 7.1, Outotec, Pori 2018. Software available at www.outotec.com/HSC.

  30. B. Pieraggi, Oxidation of Metals 27, 177 (1987). https://doi.org/10.1007/s11085-012-9297-3.

    Article  CAS  Google Scholar 

  31. M. H. Guo, Q. M. Wang, P. L. Ke, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, Surface and Coatings Technology 200, 3942 (2006). https://doi.org/10.1016/j.surfcoat.2004.12.005.

    Article  CAS  Google Scholar 

  32. Y. Harada, Japan Thermal Spraying Society 33, 128 (1996). https://doi.org/10.1016/C2014-0-00259-6.

    Article  CAS  Google Scholar 

  33. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995). https://doi.org/10.1007/BF01046725.

    Article  CAS  Google Scholar 

  34. H. M. Tawancy, Oxidation of Metals 45, 323 (1996). https://doi.org/10.1007/BF01046988.

    Article  CAS  Google Scholar 

  35. H. Izuta and Y. Komura, Journal of the Japan Institute of Metals and Materials 58, 1196 (1994). https://doi.org/10.2320/jinstmet1952.58.10_1196.

    Article  CAS  Google Scholar 

  36. S. H. Cho, S. B. Park, J. H. Lee, J. M. Hur, and H. S. Lee, Oxidation of Metals 78, 153 (2012). https://doi.org/10.1007/s11085-012-9297-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research fund of Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Hyeon Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, HY., Lim, GS., Kwon, SC. et al. Comparison of High-Temperature Corrosion Behavior of a FeCrAl Anode Current Collector in Liquid Ag and O2 for the Solid Oxide Membrane Electrolysis Process. Oxid Met 94, 343–357 (2020). https://doi.org/10.1007/s11085-020-09995-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09995-2

Keywords

Navigation