Skip to main content
Log in

High-Temperature Corrosion of Ti-46Al-6Nb-0.5 W-0.5Cr-0.3Si-0.1C Alloy in Ar/0.2%SO2 Gas

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Ti-46Al-6Nb-0.5 W-0.5Cr-0.3Si-0.1C alloy was corroded at 900–1100 °C in Ar/0.2%SO2 gas for 50–300 h to study its corrosion behavior in a corrosive SO2-environment. It displayed superior corrosion resistance at 900–1000 °C for 50–100 h, forming triple-layered oxide scales consisting of an outer rutile-TiO2 layer, an intermediate α-Al2O3 layer, and an inner (rutile-TiO2, α-Al2O3)-mixed layer. Preferential oxidation of Ti and Al delayed harmful sulfidation. Since there was a large amount of Al in the alloy, relatively thick intermediate α-Al2O3 layers formed. Nb, W, and Si additionally suppressed rutile formation. Nb, W, Si, and Cr tended to accumulate in subscale mainly due to their thermodynamic nobility compared to Ti and Al. When corroded at 1000 °C for 300 h, the alloy suffered nodular corrosion, forming coarse, discrete oxide nodules consisting of TiO2 and Al2O3. When corroded at 1100 °C for 100 h, the alloy became nonprotective owing to the formation of a thick, loosely adherent scale consisting of outer (TiO2, Al2O3)-oxides and inner (Nb1-xS, TiS)-sulfides, beneath which (TixW1-x, Al3Nb)-mixed subscale existed. Corrosion was generally governed by outward diffusion of Ti, Al, Cr, and W and inward diffusion of oxygen and sulfur. The outward diffusing tendency of Nb and Si was weak. As corrosion temperature and time increased, sulfur diffused more across the oxide scale, eventually resulting in formation of Nb1-xS and TiS sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Y. Park, D. Y. Seo, S. W. Kim, S. E. Kim, J. K. Hong and D. B. Lee, Intermetallics74, 2016 (8).

    Article  CAS  Google Scholar 

  2. S. Yuke, S. W. Kim, J. Hahn and D. B. Lee, Oxidation of Metals91, 2019 (677).

    Article  CAS  Google Scholar 

  3. Y. Shida and H. Anada, Oxidation of Metals45, 1996 (197).

    Article  CAS  Google Scholar 

  4. J. P. Lin, L. L. Zhao, G. Y. Li, L. Q. Zhang, X. P. Song, F. Ye and G. L. Chen, Intermetallics19, 2011 (131).

    Article  CAS  Google Scholar 

  5. S. J. Qu, S. Q. Tang, A. H. Feng, C. Feng, J. Shen and D. L. Chen, Acta Materialia148, 2018 (300).

    Article  CAS  Google Scholar 

  6. D. Vojtĕch, T. Popela, J. Kubásek, J. Maixner and P. Novák, Intermetallics19, 2011 (493).

    Article  Google Scholar 

  7. H. L. Du, P. K. Datta, D. Hu and X. Wu, Corrosion Science49, 2007 (2406).

    Article  CAS  Google Scholar 

  8. H. R. Jiang, Z. L. Wang, W. S. Ma, X. R. Feng, Z. Q. Dong, L. Zhang and Y. Liu, Transactions of Nonferrous Metals Society of China18, 2008 (512).

    Article  CAS  Google Scholar 

  9. Z. Wu, R. Hu, T. Zhang, H. Zhou and J. Li, Materials Science and Engineering A701, 2017 (214).

    Article  CAS  Google Scholar 

  10. H. Anada and Y. Shida, Journal of the Japan Institute of Metals58, 1994 (1036).

    Article  CAS  Google Scholar 

  11. Y. Shida and H. Anada, Materials Transactions JIM35, 1994 (623).

    Article  CAS  Google Scholar 

  12. S. W. Kim, J. K. Hong, Y. S. Na, J. T. Yeom and S. E. Kim, Materials & Design54, 2014 (814).

    Article  CAS  Google Scholar 

  13. S. W. Kim, P. Wang, M. H. Oh, D. M. Wee and K. S. Kumar, Intermetallics12, 2004 (499).

    Article  CAS  Google Scholar 

  14. Q. Wang, H. Ding, H. Zhang, R. Chen, J. Guo and H. Fu, Materials Science and Engineering A700, 2017 (198).

    Article  CAS  Google Scholar 

  15. X. Y. Li and S. Taniguchi, Materials Science and Engineering A398, 2005 (268).

    Article  Google Scholar 

  16. J. D. Sunderkötter, H. J. Schmutzler, V. A. C. Haanappel, R. Hofman, W. Glatz, H. Clemens and M. F. Stroosnijder, Intermetallics5, 1997 (525).

    Article  Google Scholar 

  17. G. Y. Lai, High-Temperature Corrosion and Materials Applications, (ASM International, USA, 2007), pp. 201–234.

    Google Scholar 

  18. D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, England, 2008), pp. 361–396.

    Book  Google Scholar 

  19. R. John, Sulfidation and mixed gas corrosion of alloys. in Shreir’s Corrosion, vol. 1, 4th ed, eds. R. A. Cottis, M. J. Graham, R. Lindsay, S. B. Lyon, J. A. Richardson, J. D. Scantlebury and F. H. Stott (Elsevier, USA, 2010), pp. 240–271.

    Chapter  Google Scholar 

  20. H. A. Lipsitt, High-temperature ordered intermetallic alloys, in High-Temperature Ordered Intermetallic Alloys, MRS Symp. Proc. 39, eds. C. C. Koch, C. T. Liu and N. S. Stoloff (MRS, Pittsburgh, 1985), p. 351.

  21. J. W. Fergus, Materials Science and Engineering A338, 2002 (108).

    Article  Google Scholar 

  22. M. W. Brumm and H. J. Grabke, Corrosion Science33, 1992 (1677).

    Article  CAS  Google Scholar 

  23. P. Kofstad, High Temperature Oxidation Metals, (Wiley, USA, 1966), p. 175.

    Google Scholar 

  24. K. Maki, M. Shioda, M. Sayashi, T. Shimizu and S. Isobe, Materials Science and Engineering A153, 1992 (591).

    Article  Google Scholar 

  25. Y. Murata, M. Morinaga, Y. Shimamura, Y. Takada and S. Miyazaki, Mechanical properties and oxidation resistance of high purity TiAl intermetallic compounds. in Structural Intermetallics, eds. R. Darolia, J. J. Lewandowski, C. T. Liu, P. L. Martin, D. B. Miracle and M. V. Nathal (TMS, USA, 1993), pp. 247–256.

    Google Scholar 

  26. A. Takasaki, K. Ojima and Y. Taneda, Metallurgical and Materials Transactions A25, 1994 (2491).

    Article  Google Scholar 

  27. D. Y. Seo, T. D. Nguyen and D. B. Lee, Oxidation of Metals74, 2010 (145).

    Article  CAS  Google Scholar 

  28. D. J. Kim, D. Y. Seo, H. Sarri, T. Sawatzky and Y. W. Kim, Intermetallics19, 2011 (1509).

    Article  CAS  Google Scholar 

  29. D. Pilone and F. Felli, Intermetallics26, 2012 (36).

    Article  CAS  Google Scholar 

  30. Y. Wu, S. K. Hwang and Y. Umakoshi, Materials Transactions45, 2004 (1272).

    Article  CAS  Google Scholar 

  31. S. Y. Park, D. Y. Seo, S. W. Kim, S. E. Kim, J. K. Hong, S. B. Jung, S. H. Bak and D. B. Lee, Science of Advanced Materials8, 2016 (2264).

    Article  CAS  Google Scholar 

  32. H. J. Grabke, High temperature corrosion in complex, multi-reactant gaseous environments. in High Temperature Materials Corrosion in Coal Gasification Atmospheres, ed. J. F. Norton (Elsevier Applied Science Publishers, England, 1984), pp. 59–82.

    Google Scholar 

  33. H. L. Du, A. Aljarany, P. K. Datta and J. S. Burnell-Gay, Corrosion Science47, 2005 (1706).

    Article  CAS  Google Scholar 

  34. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed, (Cambridge University Press, England, 2006), pp. 195–196.

    Book  Google Scholar 

  35. R. A. Rapp, Metallurgical and Materials Transactions A15, 1984 (765).

    Article  Google Scholar 

  36. Y. Sun, E. N. Hoffman, P. S. Lam and X. Li, Scripta Materialia65, 2011 (388).

    Article  CAS  Google Scholar 

  37. A. Rahmel and P. J. Spencer, Oxidation of Metals35, 1991 (53).

    Article  CAS  Google Scholar 

  38. Y. M. Chiang, D. P. Birnie and W. D. Kingery, Physical Ceramics, (Wiley, New York, 1996), p. 109.

    Google Scholar 

  39. S. Taniguchi and T. Shibata, Intermetallics4, 1996 (S85).

    Article  CAS  Google Scholar 

  40. S. Somiya, S. Hirano and S. Kamiya, Journal of Solid State Chemistry25, 1978 (273).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Council of Science and Technology (NST) Grant by the Korea government (MSIT) (No. CRC-15-07-KIER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Bok Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hahn, J., Yuke, S., Kim, S.W. et al. High-Temperature Corrosion of Ti-46Al-6Nb-0.5 W-0.5Cr-0.3Si-0.1C Alloy in Ar/0.2%SO2 Gas. Oxid Met 94, 113–125 (2020). https://doi.org/10.1007/s11085-020-09981-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09981-8

Keywords

Navigation