Skip to main content
Log in

Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The formation and performance of oxide scale on a low-alloy steel were investigated during hot rolling at 850 and 950 °C under various lubrication conditions, including benchmarks (dry condition and water) and water-based nanolubricants containing various concentrations of nano-TiO2 from 1.0 to 8.0 wt%. The results showed that the addition of nano-TiO2 particles in the lubricant significantly reduced the thickness of oxide scale and surface oxide roughness. The reduction reached the maximum when the concentration of TiO2 was 4.0 wt%. Detailed oxide phase characterisation and oxide component fraction determination revealed that hot rolling destroyed the conventional multi-layer oxide scale and promoted magnetite and haematite formation because of easy access of oxygen from the deformed structure. The effect of TiO2 was explained by the decrease in the rolling force, which led to a higher fraction of dense retaining wustite and therefore reduced the extent of further oxidation. Increasing temperature did not change the trend of lubrication effect but raised the rate of steel oxidation in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Suárez, Y. Houbaert, X. V. Eynde, and R. Colás, Corrosion Science 51, 309 (2009).

    Article  Google Scholar 

  2. X. Cheng, Z. Jiang, D. Wei, L. Hao, J. Zhao, and L. Jiang, Tribology International 84, 61 (2015).

    Article  CAS  Google Scholar 

  3. T. Jia, Z. Y. Liu, H. F. Hu, and G. D. Wang, ISIJ International 51, 1468 (2011).

    Article  CAS  Google Scholar 

  4. X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang, Corrosion Science 90, 140 (2015).

    Article  CAS  Google Scholar 

  5. X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang, Wear 332–333, 1286 (2015).

    Article  Google Scholar 

  6. Z. Y. Jiang, J. Tang, W. Sun, A. K. Tieu, and D. Wei, Tribology International 43, 1339 (2010).

    Article  CAS  Google Scholar 

  7. X. Cheng, Z. Jiang, J. Zhao, D. Wei, L. Hao, J. Peng, M. Luo, L. Ma, S. Luo, and L. Jiang, Wear 338–339, 178 (2015).

    Article  Google Scholar 

  8. P. A. Munther and J. G. Lenard, Journal of Materials Processing Technology 88, 105 (1999).

    Article  Google Scholar 

  9. L. Luong and T. Heijkoop, Wear 71, 93 (1981).

    Article  CAS  Google Scholar 

  10. H. Utsunomiya, T. Nakagawa, and R. Matsumoto, Procedia Manufacturing 15, 46 (2018).

    Article  Google Scholar 

  11. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 56, 89 (2001).

    Article  CAS  Google Scholar 

  12. S. Birosca, D. Dingley, and R. L. Higginson, Journal of Microscopy 213, 235 (2004).

    Article  CAS  Google Scholar 

  13. S. Garber and G. Sturgeon, (1959).

  14. H. Wriedt, Binary Alloy Phase Diagrams, 2nd edn, ed. B. Massalski 2, (1990).

  15. X. Yu, Z. Jiang, J. Zhao, D. Wei, C. Zhou, and Q. Huang, Corrosion Science 85, 115 (2014).

    Article  CAS  Google Scholar 

  16. X. L. Yu, Z. Y. Jiang, J. W. Zhao, D. B. Wei, and C. L. Zhou, Applied Mechanics and Materials 395–396, 273 (2013).

    Article  Google Scholar 

  17. D. B. Lee and J. W. Choi, Oxidation of Metals 64, 319 (2005).

    Article  CAS  Google Scholar 

  18. F. H. Stott, G. C. Wood, and J. Stringer, Oxidation of Metals 44, 113 (1995).

    Article  CAS  Google Scholar 

  19. K. Dohda, C. Boher, F. Rezai-Aria, and N. Mahayotsanun, Friction 3, 1 (2015).

    Article  CAS  Google Scholar 

  20. H. Wu, F. Jia, J. Zhao, S. Huang, L. Wang, S. Jiao, H. Huang, and Z. Jiang, Wear 426–427, 792 (2019).

    Article  Google Scholar 

  21. H. Xie, S. Dang, B. Jiang, L. Xiang, S. Zhou, H. Sheng, T. Yang, and F. Pan, Applied Surface Science 475, 847 (2019).

    Article  CAS  Google Scholar 

  22. S. Du, J. Sun, and P. Wu, Carbon 140, 338 (2018).

    Article  CAS  Google Scholar 

  23. A. S. He, S. Q. Huang, J. H. Yun, H. Wu, Z. Y. Jiang, J. Stokes, S. H. Jiao, L. Z. Wang, and H. Huang, Tribology Letters 65, 40 (2017).

    Article  Google Scholar 

  24. Y. Bao, J. Sun, and L. Kong, Tribology International 114, 257 (2017).

    Article  CAS  Google Scholar 

  25. Y. Meng, J. Sun, P. Wu, C. Dong, and X. Yan, Nanomaterials 8, 111 (2018).

    Article  Google Scholar 

  26. H. Wu, J. Zhao, L. Luo, S. Huang, L. Wang, S. Zhang, S. Jiao, H. Huang, and Z. Jiang, Lubricants 6, 57 (2018).

    Article  Google Scholar 

  27. H. Wu, J. Zhao, W. Xia, X. Cheng, A. He, J. H. Yun, L. Wang, H. Huang, S. Jiao, L. Huang, S. Zhang, and Z. Jiang, Journal of Manufacturing Processes 27, 26 (2017).

    Article  Google Scholar 

  28. H. Wu, J. Zhao, W. Xia, X. Cheng, A. He, J. H. Yun, L. Wang, H. Huang, S. Jiao, L. Huang, S. Zhang and Z. Jiang, Tribology International 109, 398 (2017).

    Article  CAS  Google Scholar 

  29. H. Wu, J. Zhao, X. Cheng, W. Xia, A. He, J.-H. Yun, S. Huang, L. Wang, H. Huang, S. Jiao and Z. Jiang, Tribology International 117, 24 (2018).

    Article  CAS  Google Scholar 

  30. B. G. R. K. Singh Raman, and D. J. Young, Materials Science and Technology 14, 373 (1998).

  31. K. Lee, Y. Hwang, S. Cheong, Y. Choi, L. Kwon, J. Lee and S. H. Kim, Tribology Letters 35, 127 (2009).

    Article  CAS  Google Scholar 

  32. X. Tao, Z. Jiazheng and X. Kang, Journal of Physics D: Applied Physics 29, 2932 (1996).

    Article  CAS  Google Scholar 

  33. R. Dwyer-Joyce, R. Sayles and E. Ioannides, Wear 175, 133 (1994).

    Article  Google Scholar 

  34. S. Mrowec and K. Przybylski, Oxidation of Metals 11, 383 (1977).

    Article  CAS  Google Scholar 

  35. M. H. Davies, M. T. Simnad and C. E. Birchenall, Jom 3, 889 (1951).

    Article  CAS  Google Scholar 

  36. R. Y. Chen and W. Y. D. Yeun, Oxidation of Metals 59, 433 (2003).

    Article  CAS  Google Scholar 

  37. D. P. Burke and R. L. Higginson, Scripta Materialia 42, 277 (2000).

    Article  CAS  Google Scholar 

  38. Z.-F. Li, G.-M. Cao, F. Lin, H. Wang and Z.-Y. Liu, Oxidation of Metals 90, 337 (2018).

    Article  CAS  Google Scholar 

  39. J. Tominaga, K.-Y. Wakimoto, T. Mori, M. Murakami and T. Yoshimura, Transactions of the Iron and Steel Institute of Japan 22, 646 (1982).

    Article  Google Scholar 

  40. W. Sun, A. K. Tieu, Z. Jiang, H. Zhu and C. Lu, Journal of Materials Processing Technology 155–156, 1300 (2004).

    Article  Google Scholar 

  41. S. Hayashi, K. Mizumoto, S. Yoneda, Y. Kondo, H. Tanei and S. Ukai, Oxidation of Metals 81, 357 (2014).

    Article  CAS  Google Scholar 

  42. Y. Shizukawa, S. Hayashi, S. Yoneda, Y. Kondo, H. Tanei and S. Ukai, Oxidation of Metals 86, 315 (2016).

    Article  CAS  Google Scholar 

  43. S. Yoneda, S. Hayashi, Y. Kondo, H. Tanei, and S. Ukai, Oxidation of Metals 87, 125 (2017).

    Article  CAS  Google Scholar 

  44. X. Yu, Z. Jiang, D. Wei, C. Zhou, Q. Huang, and D. Yang, Wear 302, 1286 (2013).

    Article  CAS  Google Scholar 

  45. K. Mori and D. Ito, CIRP Annals 58, 267 (2009).

    Article  Google Scholar 

  46. P. Liu, L. Wei, S. Ye, H. Xu, and Y. Chen, Surface and Coatings Technology 205, 3582 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports from Baosteel-Australia Joint Research and Development Center (BAJC) under the Project of BA17004 and Australian Research Council (ARC) under Linkage Project Program (LP150100591). The authors are grateful to Mr. Suoquan Zhang at Baosteel Research Institute for the provision of steel samples. We would like to thank the technicians in the workshop of SMART Infrastructure Facility at University of Wollongong for their kind help on samples machining. We also wish to extend special thanks to A/Prof. Buyung Kosasih and Mr. Long Wang for their great supports on the ultrasonic treatment of applied lubricants. Thanks also go to Drs. Lin Wang and Chun Yu who participated in some oxide analyses when they were working at UNSW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianqiang Zhang, Han Huang or Zhengyi Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Jiang, C., Zhang, J. et al. Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant. Oxid Met 92, 315–335 (2019). https://doi.org/10.1007/s11085-019-09924-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09924-y

Keywords

Navigation