Skip to main content
Log in

Oxide-Scale Evolution on a New Ni–Fe-Based Superalloy at High Temperature

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal oxidation behavior and oxide-scale evolution on a newly developed Ni–Fe-based superalloy were investigated. Three oxidation stages were generally observed, an initial stage of rapid mass gain, then a second stage of parabolic kinetics, followed by an equilibrium period after about 50, 75, and 100 h at 1000, 1100, and 1200 °C, respectively. Cr2O3 and NiAl2O4 play an important role in protecting the matrix from oxidation at 1000 °C. The chromium supply becomes insufficient to support the continuously growing chromia scale with the increased oxidation temperature. Ultimately, the high-temperature oxidation resistance mainly depends on the formation of the inner continuous α-Al2O3 oxide layer. The quick formation of continuous α-Al2O3 oxide layer at 1200 °C compared to that at 1100 °C leads to a significantly reduced parabolic rate constant, which indicates that the new Ni–Fe-based superalloy has excellent oxidation resistance properties at higher temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Pei, Z. Wen, Y. Zhang and Z. Yue, Applied Surface Science 411, 124 (2017).

    Article  Google Scholar 

  2. M. Ansari, R. Shojia-Razavi, M. Barekat and M. C. Man, Corrosion Science 118, 168 (2017).

    Article  Google Scholar 

  3. D. Saber, I. S. Emam and R. Abdel-Karim, Journal of Alloys and Compounds 719, 133 (2017).

    Article  Google Scholar 

  4. D. Sun, C. Liang, J. Shang, J. Yin, Y. Song, W. Li, T. Liang and X. Zhang, Applied Surface Science 385, 587 (2016).

    Article  Google Scholar 

  5. A. Col, V. Parry and C. Pascal, Corrosion Science 114, 17 (2017).

    Article  Google Scholar 

  6. J. Cao, J. Zhang, R. Chen, Y. Ye and Y. Hua, Surface and Coatings Technology 311, 19 (2016).

    Article  Google Scholar 

  7. J. Huang, H. Fang, X. Fu, F. Huang, W. Hong and Q. Zhang, Oxidation of Metals 53, 273 (2000).

    Article  Google Scholar 

  8. Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita and S. Ukai, Oxidation of Metals 73, 375 (2010).

    Article  Google Scholar 

  9. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006).

    Article  Google Scholar 

  10. G. R. Holcomb, Journal of the Electrochemical Society 156, C292 (2009).

    Article  Google Scholar 

  11. B. C. Wu, E. Chang and C. H. Chao, Journal of Materials Science 25, 1112 (1990).

    Article  Google Scholar 

  12. T. F. An, H. R. Guan, X. F. Sun and Z. Q. Hu, Oxidation of Metals 54, 301 (2000).

    Article  Google Scholar 

  13. M. W. Brumm and H. J. Grabke, Corrosion Science 33, 1677 (1992).

    Article  Google Scholar 

  14. C. S. Giggins and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  Google Scholar 

  15. C. Fu, W. K. Kong and G. H. Cao, Surface and Coatings Technology 258, 347 (2014).

    Article  Google Scholar 

  16. C. Wagner, Corrosion Science 5, 751 (1965).

    Article  Google Scholar 

  17. A. Sato, Y. L. Chiu and R. C. Reed, Acta Materialia 59, 225 (2011).

    Article  Google Scholar 

  18. T. Ishitsuka, Y. Inoue and H. Ogawa, Oxidation of Metals 61, 125 (2004).

    Article  Google Scholar 

  19. H. E. Evans, D. A. Hilton, R. A. Holm and S. J. Webster, Oxidation of Metals 19, 1 (1983).

    Article  Google Scholar 

  20. B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006).

    Article  Google Scholar 

  21. A. G. Revesz and F. P. Fehlner, Oxidation of Metals 15, 297 (1981).

    Article  Google Scholar 

  22. A. Hotař, P. Kejzlar, M. Palm and J. Mlnařík, Corrosion Science 100, 147 (2015).

    Article  Google Scholar 

  23. D. Janda, H. Fietzek, M. Galetz and M. Heilmaier, Intermetallics 41, 51 (2013).

    Article  Google Scholar 

  24. S. Chevalier, P. Jozun, G. Borchardt, A. Galerie, K. Przybylski and J. P. Larpin, Oxidation of Metals 73, 43 (2010).

    Article  Google Scholar 

  25. D. Naumenko, B. A. Pint and W. J. Quadakkers, Oxidation of Metals 86, 1 (2016).

    Article  Google Scholar 

  26. A. Ul-Hamid, Corrosion Science 46, 27 (2004).

    Article  Google Scholar 

  27. A. Chyrkin, N. Mortazavi, M. Halvarsson, D. Grüner and W. J. Quadakkers, Corrosion Science 98, 688 (2015).

    Article  Google Scholar 

  28. D. J. Young, A. Chyrkin, J. He, D. Grüner and W. J. Quadakkers, Oxidation of Metals 79, 405 (2013).

    Article  Google Scholar 

  29. D. Azimi Yancheshmeh, M. Esmailian and K. Shirvani, International Journal of Hydrogen Energy 43, 5365 (2018).

    Article  Google Scholar 

  30. V. P. Deodeshmukh, S. J. Matthews and D. L. Klarstrom, International Journal of Hydrogen Energy 36, 4580 (2011).

    Article  Google Scholar 

  31. M. Bensch, A. Sato, N. Warnken, E. Affeldt, R. C. Reed and U. Glatzel, Acta Materialia 60, 5468 (2012).

    Article  Google Scholar 

  32. H. M. Hindam, Journal of the Electrochemical Society 127, 1622 (1980).

    Article  Google Scholar 

  33. A. D. Dalvi and W. W. Smeltzer, Journal of the Electrochemical Society 121, 386 (1974).

    Article  Google Scholar 

  34. D. Moseley, Y. Hu, V. Randle and T. Irons, Materials Science and Engineering: A 392, 282 (2005).

    Article  Google Scholar 

  35. L. Zheng, M. Zhang, R. Chellali and J. Dong, Applied Surface Science 257, 9762 (2011).

    Article  Google Scholar 

  36. N. B. Pilling and R. E. Bedworth, Journal of the Institute of Metals 29, 529 (1923).

    Google Scholar 

  37. H. E. Evans, International Materials Reviews 40, 1 (1995).

    Article  Google Scholar 

  38. M. Schütze, Oxidation of Metals 25, 409 (1986).

    Article  Google Scholar 

  39. M. Schütze, Oxidation of Metals 24, 199 (1985).

    Article  Google Scholar 

  40. H. E. Evans, Materials Science and Engineering: A 120, 139 (1989).

    Article  Google Scholar 

  41. E. P. Busso, H. E. Evans, Z. Q. Qian and M. P. Yaylor, Acta Materialia 58, 1242 (2010).

    Article  Google Scholar 

  42. A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Grüner and W. J. Quadakkers, Corrosion Science 124, 138 (2017).

    Article  Google Scholar 

  43. R. A. Rapp, Acta Metallurgica 9, 730 (1961).

    Article  Google Scholar 

  44. N. Otsuka, Y. Shida and H. Fujikawa, Oxidation of Metals 32, 13 (1989).

    Article  Google Scholar 

  45. B. J. Reddy and R. L. Frost, Spectrochimica Acta Part A 61, 1721 (2005).

    Article  Google Scholar 

  46. X. X. Ma, Y. D. He, D. R. Wang and J. Zhang, Applied Surface Science 258, 4733 (2012).

    Article  Google Scholar 

  47. L. L. Tian and J. C. Xu, Applied Surface Science 257, 7615 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by Shanghai Sailing Program [17YF1405800] of Shanghai Municipality and Prospective Joint Research Project of Department of Science and Technology of Jiangsu Province [BY2015068-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueshan Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Yang, Z., Wu, Z. et al. Oxide-Scale Evolution on a New Ni–Fe-Based Superalloy at High Temperature. Oxid Met 92, 49–65 (2019). https://doi.org/10.1007/s11085-019-09913-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09913-1

Keywords

Navigation