Skip to main content
Log in

Microstructural Evolution of Oxidation Film on a Single Crystal Nickel-Based Superalloy at 980 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal oxidation behavior of a single crystal nickel-based superalloy was investigated at 980 °C through XRD, SEM/EDX and EPMA. The mass gain process exhibited two periods: an initial stage followed by a steady-state stage. Based on the experimental results, the rapid formation of alumina and NiO was responsible for the initial stage of mass gain, and the formation of complex spinels phases may dramatically effect on the steady stage. The microstructure of oxidation film, from the top surface down to the base material, was clarified as Ni-rich oxides, Ni–Cr oxides, Cr–Ta–Co oxides, Ni–Al oxides and finally a continuous Al2O3. In addition, AlN formed in the γ′-free zone. The effect of oxidation film evolution on the oxidation kinetics and mechanism were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Z. Wang, B. Chen, X. C. Zhang, S. T. Tu, J. Wang and C. C. Zhang, International Journal of Fatigue 97, 190–201 (2017).

    Article  Google Scholar 

  2. S. H. Cho, S. K. Lee, D. Y. Kim, J. H. Lee and J. M. Hur, Journal of Alloys and Compounds 695, 2878–2885 (2017).

    Article  Google Scholar 

  3. A. Srivastava, S. Gopagoni, A. Needleman, V. Seetharaman, A. Staroselsky and R. Banerjee, Acta Materialia 60, 5697–5711 (2012).

    Article  Google Scholar 

  4. A. A. N. Németh, D. J. Crudden, D. E. J. Armstrong, D. M. Collins, K. Li, A. J. Wilkinson, C. R. M. Grovenor and R. C. Reed, Acta Materialia 126, 361–371 (2017).

    Article  Google Scholar 

  5. S. Cruchley, H. E. Evans, M. P. Taylor, M. C. Hardy and S. Stekovic, Corrosion Science 75, 58–66 (2013).

    Article  Google Scholar 

  6. F. Huang, J. Wang, H. Han and W. Ke, Corrosion Science 76, 52–59 (2013).

    Article  Google Scholar 

  7. J. Xiao, N. Pruéhomme, N. Li and V. Ji, Applied Surface Science 284, 446–452 (2013).

    Article  Google Scholar 

  8. Y. Wu and T. Narita, Surface & Coatings Technology 202, 140–145 (2007).

    Article  Google Scholar 

  9. C. T. Liu, J. Ma and X. F. Sun, Journal of Alloys and Compounds 491, 522–526 (2010).

    Article  Google Scholar 

  10. A. Pfennig and B. Fedelich, Corrosion Science 50, 2484–2492 (2008).

    Article  Google Scholar 

  11. J. Brenneman, J. Wei, Z. Sun, L. Liu and Y. Zhou, Corrosion Science 100, 267–274 (2015).

    Article  Google Scholar 

  12. J. D. Cao, J. S. Zhang, Y. Q. Hua, Z. Rong, R. F. Chen and Y. X. Ye, Rare Metals 9, 1–8 (2016).

    Google Scholar 

  13. U. Kpupp and H. J. Christ, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 31, 56 (2000).

    Google Scholar 

  14. D. W. Yun, S. M. Seo, H. W. Jeong and Y. S. Yoo, Corrosion Science 90, 392–401 (2015).

    Article  Google Scholar 

  15. S. Dryepondt, D. Monceau, F. Crabos and E. Andrieu, Acta Materialia 53, 4199–4209 (2005).

    Article  Google Scholar 

  16. H. Q. Pei, Z. X. Wen and Z. F. Yue, Journal of Alloys and Compounds 704, 218–226 (2017).

    Article  Google Scholar 

  17. S. Han and D. J. Young, Materials Research 7, 11–16 (2004).

    Article  Google Scholar 

  18. Z. X. Shi, J. R. Li, S. Z. Liu and M. Han, Transactions of Nonferrous Metals Society of China 21, 998–1003 (2011).

    Article  Google Scholar 

  19. J. Yu, J. R. Li, J. Q. Zhao, M. Han, Z. X. Shi, S. Z. Liu and H. L. Yuan, Materials Science and Engineering A 560, 47–53 (2013).

    Article  Google Scholar 

  20. L. Zheng, M. Zhang and J. Dong, Applied Surface Science 256, 7510–7515 (2010).

    Article  Google Scholar 

  21. S. J. Park, S. M. Seo, Y. S. Yoo, H. W. Jeong and H. J. Jang, Corrosion Science 90, 305–312 (2015).

    Article  Google Scholar 

  22. N. Halem, M. Abrudeanu and G. Petot-Ervas, Materials Science and Engineering B 176, 1002–1009 (2011).

    Article  Google Scholar 

  23. A. Sato, Y.-L. Chiu and R. C. Reed, Acta Materialia 59, 225–240 (2011).

    Article  Google Scholar 

  24. Z. X. Shi, L. J. Rong and L. S. Zhong, Transactions of Nonferrous Metals Society of China 22, 534–538 (2012).

    Article  Google Scholar 

  25. M. Bensch, A. Sato, N. Warnken, E. Affeldt, R. C. Reed and U. Glatzel, Acta Materialia 60, 5468–5480 (2012).

    Article  Google Scholar 

  26. J. He, J. N. Dong, M. C. Zhang, L. Zheng and Z. H. Yao, Oxidation of Metals 84, 61–72 (2015).

    Article  Google Scholar 

  27. J. Chapovaloff, F. Rouillard, K. Wolski and M. Pijolat, Corrosion Science 69, 31–42 (2013).

    Article  Google Scholar 

  28. Q. Jia and D. Gu, Optics & Laser Technology 62, 161–171 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the NNSF of China (Grant number: U1610256) and 863 program (2105AA034402). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Cheng, C., Zhang, L. et al. Microstructural Evolution of Oxidation Film on a Single Crystal Nickel-Based Superalloy at 980 °C. Oxid Met 89, 303–317 (2018). https://doi.org/10.1007/s11085-017-9787-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9787-4

Keywords

Navigation