Skip to main content
Log in

Microstructure of Bare and Sol–Gel Alumina-Coated Nickel-Base Alloy Inconel 625 After Long-Term Oxidation at 900 °C

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Though Ni-based superalloys show a high oxidation and corrosion resistance, coatings can still improve these properties, especially if used at temperatures up to 1000 °C. Here, a coating was prepared by applying a boehmite-sol via dip-coating and a subsequent heat treatment at 600 °C for 30 min. To evaluate the coating, the oxidation behavior of bare and alumina-coated Ni-base alloy Inconel 625 in air at 900 °C was studied for up to 2000 h. Electron microscopy studies of sample surfaces and cross sections showed that (1) in the 3.5–6.3 µm-thick scale formed on the bare alloy, Fe and Ni are located as fine precipitates at the grain boundaries of the chromia-rich scale, (2) Ni and Ti are concentrated to a minor degree at the grain boundaries of the scale, too; and for the coated sample: (3) the only 1.8-µm-thick sol–gel alumina coating slows down the formation of chromia on the alloy surface and reduces the outward diffusion of the alloy constituents. The protective effect of the coating was evidenced by (1) diminished chromium diffusion at grain boundaries resulting in less pronounced string-like protrusions at the outer surface of the coated IN 625, (2) formation of a Cr-enriched zone above the alloy surface which was thinner than the scale on the uncoated sample, (3) lower extension in depth of Cr depletion in the superficial zone of the alloy surface of the coated sample in comparison with that region of the uncoated one, and (4) a narrower zone of formation of Kirkendall pores.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. H. White, in The Development of Gas Turbine Materials, ed. G. W. Meetham (Springer, Dordrecht, 1981), p. 89.

    Chapter  Google Scholar 

  2. D. Seo, M. Sayar, and K. Ogawa, Surface & Coatings Technology 206, 2851 (2012).

    Article  Google Scholar 

  3. J. Liu, D. Dyson, and E. Asselin, Oxidation of Metals 86, 135 (2016).

    Article  Google Scholar 

  4. D. M. Gorman, R. L. Higginson, H. Du, G. McColvin, A. T. Fry, and R. C. Thomson, Oxidation of Metals 79, 553 (2013).

    Article  Google Scholar 

  5. D. Fantozzi, V. Matikainen, M. Uusitalo, H. Koivuluoto, and P. Vuoristo, Surface & Coatings Technology 318, 233 (2017).

    Article  Google Scholar 

  6. T. Sugama, Journal of Sol-Gel Science and Technology 12, 35 (1998).

    Article  Google Scholar 

  7. T. Sugama, Surface and Coatings Technology 106, 106 (1998).

    Article  Google Scholar 

  8. H. Cho, D. M. Lee, J. H. Lee, K. H. Bang, and B. W. Lee, Surface & Coatings Technology 202, 5625 (2008).

    Article  Google Scholar 

  9. M. Dressler, M. Nofz, R. Saliwan-Neumann, I. Dörfel, and M. Griepentrog, Thin Solid Films 517, 786 (2008).

    Article  Google Scholar 

  10. M. Dressler, M. Nofz, I. Dörfel, and R. Saliwan-Neumann, Surface & Coatings Technology 202, 6095 (2008).

    Article  Google Scholar 

  11. M. Nofz, I. Dörfel, R. Sojref, N. Wollschläger, M. Mosquera-Feijoo, and A. Kranzmann, Journal of Sol-Gel Science and Technology 81, 185 (2017).

    Article  Google Scholar 

  12. M. Nofz, I. Dörfel, R. Sojref, et al., Oxidation of Metals 89, 453 (2018).

    Article  Google Scholar 

  13. www.specialmetals.com; downloaded 14 June 2018.

  14. L. Kumar, R. Venkataramani, M. Sundararaman, P. Mukhopadhyay, and S. P. Garg, Oxidation of Metals 45, 221 (1996).

    Article  Google Scholar 

  15. A. Chyrkin, Oxidation of Metals 75, 143 (2011).

    Article  Google Scholar 

  16. E. N’dah, M. P. Hierro, K. Borrero, and F. J. Pérez, Oxidation of Metals 68, 9 (2007).

    Article  Google Scholar 

  17. J. Zurek, D. J. Young, E. Essuman, et al., Materials Science and Engineering A 477, 259 (2008).

    Article  Google Scholar 

  18. M. D. Mathew, P. Paraweswaran, and K. Bhanu Sankara Rao, Materials Characterization 59, 508 (2008).

    Article  Google Scholar 

  19. P. Petrzak, K. Kowalski, and M. Blicharski, Acta Physica Polonica A 130, 1041 (2016).

    Article  Google Scholar 

  20. R. P. Oleksak, C. S. Carney, G. R. Holcomb, and Ö. N. Doğan, Oxidation of Metals 90, 27 (2018).

    Article  Google Scholar 

  21. M. Abbasi, D.-I. Kim, J.-H. Shim, and W.-S. Jung, Journal of Alloys and Compounds 658, 210 (2016).

    Article  Google Scholar 

  22. K. H. A. Al-Hatab, M. A. Al-Bukhaiti, U. Krupp, and M. Kantehm, Oxidation of Metals 75, 209 (2011).

    Article  Google Scholar 

  23. D. M. England and A. V. Virkar, Journal of the Electrochemical Society 146, 3196 (1999).

    Article  Google Scholar 

  24. J.-H. Kim, B. K. Kim, D. I. Kim, P. P. Choi, D. Raabe, and K. W. Yi, Corrosion Science 96, 52 (2015).

    Article  Google Scholar 

  25. C. Ostwald and H. J. Grabke, Corrosion Science 46, 1113 (2004).

    Article  Google Scholar 

  26. A. C. S. Sabioni, A. M. Huntz, L. C. Borges, and F. Jomard, Philosophical Magazine 87, 1921 (2007).

    Article  Google Scholar 

  27. A. C. S. Sabioni, A. M. Huntz, F. Silva, and F. Jomard, Materials Science and Engineering A 392, 254 (2005).

    Article  Google Scholar 

  28. A. C. S. Sabioni, A. M. Huntz, J. N. V. Souza, F. Jomard, and M. D. Martins, Philosophical Magazine 88, 391 (2008).

    Article  Google Scholar 

  29. D. Kim, C. Jang, and W. S. Ryu, Oxidation of Metals 71, 271 (2009).

    Article  Google Scholar 

  30. D. L. Douglass and J. S. Armijo, Oxidation of Metals 2, 207 (1970).

    Article  Google Scholar 

  31. A. Ul-Hamid, Anti-Corrosion Methods and Materials 51, 216 (2004).

    Article  Google Scholar 

  32. S. Pedrazzini, E. S. Kiseeva, R. Escoube, et al., Oxidation of Metals 89, 375 (2018).

    Article  Google Scholar 

  33. J. Litz, A. Rahmel, M. Schorr, and J. Weiss, Oxidation of Metals 32, 167–184 (1989).

    Article  Google Scholar 

  34. E. Schmucker, C. Petitjean, L. Martinelli, P. J. Panteix, S. Ben Lagha, and M. Vilasi, Corrosion Science 111, 474 (2016).

    Article  Google Scholar 

  35. T. Connolley, P. A. S. Reed, and M. J. Starink, Materials Science and Engineering A 340, 139 (2003).

    Article  Google Scholar 

  36. H. Nakajima, JOM The Journal of the Minerals, Metals & Materials Series (TMS) 49, 15 (1997).

    Article  Google Scholar 

  37. E. Schmucker, C. Petitjean, L. Martinelli, P.-J. Panteix, B. Lagha, and M. Vilasi, Corrosion Science 111, 467 (2016).

    Article  Google Scholar 

  38. B. Jönsson and A. Westerlund, Oxidation of Metals 88, 315 (2017).

    Article  Google Scholar 

  39. D. Kim, D. Kim, H. J. Lee, C. Jang, and D. J. Yoon, Journal of Nuclear Materials 441, 612 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Axel Kranzmann for helpful discussions and hints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nofz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nofz, M., Dörfel, I., Sojref, R. et al. Microstructure of Bare and Sol–Gel Alumina-Coated Nickel-Base Alloy Inconel 625 After Long-Term Oxidation at 900 °C. Oxid Met 91, 395–416 (2019). https://doi.org/10.1007/s11085-019-09888-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-019-09888-z

Keywords

Navigation