Skip to main content
Log in

Effect of Pressure on Metal Dusting Initiation on Alloy 800H and Alloy 600 in CO-rich Syngas

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The effect of pressure on metal dusting initiation was studied by exposing conventional alloys 600 and 800H in CO-rich syngas atmosphere (H2, CO, CO2, CH4, H2O) at ambient and 18 bar total system pressure and 620 °C for 250 h. It was verified that, at constant temperature, increasing the total system pressure increases both oxygen partial pressure (pO2) and carbon activity (a C), simultaneously. Both samples exposed at ambient pressure showed very thin oxide scale formation and no sign of metal dusting. By contrast, samples exposed in the high-pressure experiment showed severe mass loss by metal dusting attack. Iron- and chromium-rich oxides and carbides were found as corrosion products. The distinct pressure-dependent behavior was discussed by considering both thermodynamic and kinetic aspects with respect to the protective oxide formation and pit initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. A. Lefrancois, and W. B. Hoyt, Corrosion 19, 360 (1963).

  2. R. F. Hochman, in Proceedings of the 4th International Congress on Metal Corrosion, NACE, ed. N. E. Hammer, (NACE, 1972), p. 258.

  3. D. J. Young, J. Zhang, C. Geers, and M. Schütze, Materials and Corrosion 62, 7 (2011).

  4. R. Schneider, E. Pippel, J. Woltersdorf, S. Strauß, and H. J. Grabke, Steel Research 68, 326 (1997).

  5. D. J. Young, and J. Zhang, Journal of the Minerals, Metals and Materials Society 64, 1461 (2012).

  6. Y. Nishiyama, N. Otsuka, and T. Kudo, Corrosion Science 48, 2064 (2006).

  7. E. Schwab, A. Milanov, S. A. Schunk, A. Behrens, and N. Schoedel, Chemie Ingenieur Technik 87, 347 (2015).

  8. M. Peters, B. Köhler, W. Kuckshinrichs, W. Leitner, P. Markewitz, and T. E. Müller, ChemSusChem 4, 1216 (2011).

  9. K. Natesan, and Z. Zeng, 14 Feb., 2007, 2005.

  10. M. Maier, J. F. Norton, and P. D. Frampton, Materials and Corrosion 49, 330 (1998).

  11. M. Maier, J. F. Norton, and P. Puschek, Materials at High Temperatures 17, 347 (2000).

  12. K. Natesan, and Z. Zeng, Development of Materials Resistant to Metal Dusting Degradation, (U.S. Department of Energy, 2006).

  13. A. Rouaix-Vande Put, K. A. Unocic, M. P. Brady, and B. A. Pint, Corrosion Science 92, 58 (2015).

  14. C. M. Schillmoller, Chemical Engineering 93, 83 (1986).

  15. S. B. Parks, and C. M. Schillmoller, Hydrocarbon Processing 53 (1996).

  16. D. Röhnert, M. Schütze, and T. Weber, 27 Mar., 2007, NACE, Nashville, 2007.

  17. C. G. M. Hermse, and H. van Wortel, EUROCORR 2008, Edinburgh, 2008.

  18. E. Pippel, J. Woltersdorf, and H. J. Grabke, in Corrosion by carbon and nitrogen: Metal dusting, carburisation and nitridation (EFC 41), eds. by H. J. Grabke and M. Schütze (Woodhead Publishing, Cambridge, 2007), p. 49.

  19. J. Zhang, and D. J. Young, Oxidation of Metals 70, 189 (2008).

  20. Y. Nishiyama, K. Kitamura, and N. Otsuka, Materials Science Forum 595598, 649 (2008).

  21. Schmidt + Clemens GmbH & Co.KG, Centralloy® ET 45 Micro Material Data Sheet, 2009.

  22. H.-J. Christ, U. Künecke, K. Meyer, and H. G. Sockel, Oxidation of Metals 30, 27 (1988).

  23. D. Kumar, R. R. Adharapurapu, T. M. Pollock, and G. S. Was, Metallurgical and Materials Transactions A 42A, 1245 (2011).

  24. H. J. Grabke, K. Ohla, J. Peters, and I. Wolf, Materials and Corrosion 34, 495 (1983).

  25. A. Soleimani-Dorcheh, Oxidation-Nitridation of Chromium at High Temperatures and its Mitigation by Alloying (Doctoral Thesis, RWTH Aachen, Shaker Verlag, Herzogenrath, 2017).

  26. P. Kofstad, Oxidation of Metals 24, 265 (1985).

  27. P. Kofstad, Oxidation of Metals 44, 3 (1995).

  28. D. P. Whittle, G. C. Wood, D. J. Evans, and D. B. Scully, Acta Metallurgica 15, 1747 (1967).

  29. J. Hagen, Technische Katalyse - Eine Einführung, (Wiley-VCH, Weinheim, 1996).

  30. L. C. S. Kahle, Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 2013.

  31. C. G. M. Hermse, NACE International, 2011.

Download references

Acknowledgements

We gratefully thank the German Federal Ministry for Economic Affairs and Energy for the financial support. This research was done within the scope of the project “DRYREF2.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Madloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madloch, S., Dorcheh, A.S. & Galetz, M.C. Effect of Pressure on Metal Dusting Initiation on Alloy 800H and Alloy 600 in CO-rich Syngas. Oxid Met 89, 483–498 (2018). https://doi.org/10.1007/s11085-017-9801-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9801-x

Keywords

Navigation