Skip to main content
Log in

Effects of Ga, Sn Addition and Microstructure on Oxidation Behavior of Near-α Ti Alloy

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

We investigated the effects of adding Ga or Sn, with almost the same Al equivalent, on the oxidation behaviors of near-α Ti alloy with the bimodal structure and lamellar structure. The replacement of Sn with Ga decreased the alloy weight gain during oxidation, suppressed oxide growth, and improved adherence between the oxide and substrate. A lamellar alloy structure showed a lower weight gain during oxidation compared to the bimodal structure. Unlike conventional near-α alloys, recrystallization occurred near the oxide/substrate interface in Ga-modified alloy, which may contribute to the release of stress, improvement of the adherence between the oxide and substrate, and prevention of oxide-scale spallation from the Ga-modified alloy. A possible mechanism for the recrystallization in the Ga-modified alloy was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Kitashima, K. S. Suresh and Y. Yamabe-Mitarai, Crystal Research and Technology 50, 2015 (28).

    Article  Google Scholar 

  2. J. H. Perepezko, Science 326, 2009 (1068).

    Article  Google Scholar 

  3. G. Lütjering and J. C. Williams, Titanium, 2nd ed, (Springer, Berlin, 2003), p. 9.

    Book  Google Scholar 

  4. R. N. Shenoy, J. Unnam and R. K. Clark, Oxidation of Metals 26, 1986 (105).

    Article  Google Scholar 

  5. Z. Liu and G. Welsch, Metallurgical Transactions A 19A, 1988 (527).

    Article  Google Scholar 

  6. T. Kitashima, L. J. Liu and H. Murakami, Journal of the Electrochemical Society 160, 2013 (C441).

    Article  Google Scholar 

  7. D. A. P. Reis, C. R. M. Silva, M. C. A. Nono, M. J. R. Barboza, F. Piorino Neto and E. A. C. Perez, Materials Science and Engineering A 399, 2005 (276).

    Article  Google Scholar 

  8. T. J. Johnson, M. H. Loretto, and M. W. Kearns, in Proceedings of the Seventh World Titanium Conference (Warrendale, PA, TMS), 2035 (1992).

  9. K. S. Mcreynolds and S. Tamirisakandala, Metallurgical and Materials Transactions A 42A, 2011 (1732).

    Article  Google Scholar 

  10. C. Leyens and M. Peters, Titanium and titanium alloys, (Wiley-VCH, Weinheim, 2003), p. 213.

    Book  Google Scholar 

  11. A. M. Chaze, G. Beranger and C. Coddet, Titanium: Science and Technology, (DGM, Oberursel, 1985), p. 2665.

    Google Scholar 

  12. A. M. Chaze and C. Coddet, Journal of Materials Science 22, 1987 (1206).

    Article  Google Scholar 

  13. T. J. Johnson, M. H. Loreto, C. M. Younes and M. W. Kearns, in Second International Conference on the Microscopy of Oxidation (Cambridge, London, England), 1 (1993).

  14. A. M. Chaze and C. Coddet, Oxidation of Metals 28, 1987 (61).

    Article  Google Scholar 

  15. H. Chuanxi and L. Bingnan, in Titanium’92: Science and Technology, Proceedings of the Seventh World Titanium Conference (Warrendale, PA, TMS), 1891 (1992).

  16. A. M. Chaze, C. Coddet, and G. Beranger, in Sixth World Conference on Titanium, (Part IV, Société Francaise de Métallurgic, France), 1765 (1988).

  17. S. Z. Zhang, B. Zhou, N. Liu and L. Q. Chen, Oxidation of Metals 81, 2014 (373).

    Article  Google Scholar 

  18. H. L. Du, P. K. Datta, D. B. Lewis and J. S. Burnell-Gray, Corrosion Science 36, 1994 (631).

    Article  Google Scholar 

  19. T. Kitashima, Y. Yamabe-Mitarai, S. Iwasaki, and S. Kuroda, in Proceedings of the 13th World Conference on Titanium (Wiley, California, USA), 479 (2015).

  20. T. Kitashima, Y. Yamabe-Mitarai, S. Iwasaki and S. Kuroda, Metallurgical and Material Transactions A 47A, 2016 (6394).

    Article  Google Scholar 

  21. T. Kitashima and T. Kawamura, Scripta Materialia 124, 2016 (56).

    Article  Google Scholar 

  22. S. Becker, A. Rahmel, M. Schorr and M. Schutze, Oxidation of Metals 38, 1992 (425).

    Article  Google Scholar 

  23. Y. Shida and H. Anada, Corrosion Science 35, 1993 (945).

    Article  Google Scholar 

  24. Y. Shida and H. Anada, Materials Transactions 34, 1993 (236).

    Article  Google Scholar 

  25. M. Yoshihara and Y. W. Kim, Intermetallics 13, 2005 (952).

    Article  Google Scholar 

  26. M. Yoshihara and K. Miura, Intermetallics 3, 1995 (357).

    Article  Google Scholar 

  27. S. Taniguchi and T. Shibata, Intermetallics 4, 1996 (S85).

    Article  Google Scholar 

  28. C. Z. Wagner, Electrochemistry 63, 1959 (772).

    Google Scholar 

  29. P. Perez, Corrosion Science 44, 2002 (1793).

    Article  Google Scholar 

  30. F. Pitt and M. Ramulu, Journal of Materials Engineering and Performance 13, 2004 (727).

    Article  Google Scholar 

  31. Y. Yang, T. Kitashima, T. Hara, Y. Hara, Y. Yamabe-Mitarai, M. Hagiwara and L. J. Liu, Materials Science Forum 879, 2016 (2187).

    Article  Google Scholar 

  32. J. Tiley, J. Shaffer, A. Shiveley, A. Pilchak and A. Salem, Metallurgical and Materials Transactions A 45, 2014 (1041).

    Article  Google Scholar 

  33. C. Leyens, M. Peters and W. A. Kaysser, Materials Science and Technology 12, 1996 (213).

    Article  Google Scholar 

  34. C. Leyens, M. Peters, and W. A Kaysser, in the Titanium’95: Science and Technology, Proceedings of the 8th World Conference on Titanium (London: Institute of Materials, Birmingham, England), 1935 (1996).

  35. C. E. Shamblen and T. K. Redden, Metallurgical Transactions 3, 1972 (1299).

    Article  Google Scholar 

  36. E. M. Kenina, I. I. Kornilov and V. V. Vanilova, Metal Science and Heat Treatment 14, 1972 (396).

    Article  Google Scholar 

  37. T. Kitashima and Y. Yamabe-Mitarai, Metallurgical and Materials Transactions A 46, 2015 (2758).

    Article  Google Scholar 

  38. A. L. Jaromin and D. D. Edwards, Journal of American Ceramic Society 88, 2005 (2573).

    Article  Google Scholar 

  39. D. Liu, W. A. Miller and K. T. Aust, Metallurgical Transactions A 19A, 1988 (1667).

    Article  Google Scholar 

  40. T. A. Parthasarathy and P. G. Shewmon, Metallurgical Transactions A 14A, 1983 (2560).

    Article  Google Scholar 

  41. Y. K. Paek, H. Y. Lee and S. J. L. Kang, Journal of European Ceramic Society 24, 2004 (613).

    Article  Google Scholar 

  42. K. W. Chae, C. S. Hwang, D. Y. Kim and S. J. Cho, Acta Material 44, 1996 (1793).

    Article  Google Scholar 

  43. S. S. Hackney, F. S. Biancaniello, D. N. Yoon and C. A. Handwerker, Scripta Metallurgica 20, 1986 (937).

    Article  Google Scholar 

  44. C. Coddet, A. M. Chaze and G. Beranger, Journal of Materials Science 22, 1987 (2969).

    Article  Google Scholar 

  45. J. Stringer, Corrosion Science 10, 1970 (513).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the following staff members of the National Institute for Materials Science: Dr. Ayako Ikeda, Mr. Takaaki Hibaru, Mr. Shuji Kuroda, Mr. Kazuhiko Iida, and Mr. Koji Nakazato.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kitashima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Kitashima, T., Hara, T. et al. Effects of Ga, Sn Addition and Microstructure on Oxidation Behavior of Near-α Ti Alloy. Oxid Met 88, 583–598 (2017). https://doi.org/10.1007/s11085-017-9741-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-017-9741-5

Keywords

Navigation